PROGRESSIVE CHANGES IN ENERGY COST DURING A THREE-HOUR RACE-WALK EXERCISE

G. R. FARLEY, M.Sc.* and E. J. HAMLEY, Ph.D.
Loughborough University of Technology

ABSTRACT

Twenty experienced race-walkers were exercised in a controlled routine walking at 11.6 km/hr continuously for 3 hr, alternately on a treadmill and a cinder track. Analyses of expired air samples taken at 30 min intervals were used to calculate average R.Q. and energy expenditure. R.Q. was found to decrease progressively from 0.92 to 0.66 in the 3 hr and remained at this level 30 min later. The mean energy cost rose from 46.2 to 55.4 kJ/min or 24.7 to 29.7 kJ/min.m². The results indicate that this group probably experienced an elevation of aerobic activity as they utilized progressively more fat to satisfy metabolic demands and that R.Q. may be a good indicator for determining recovery after severe long duration exercise.

INTRODUCTION

During a series of studies into various anthropometric and biomechanical measurements of competitive race-walk athletes we noticed that several of our subjects showed residual effects of fatigue in the days following very severe competitions. This raised discussion as to the energy expenditure involved in race-walking especially under the easily repeated conditions of training for these competitions. Since our athletes were very familiar with our laboratory procedures we began collecting information about their body weights and respiratory quotients before and after such exercise and came to the conclusion that we should design a specific experiment to gain insight to the energy levels involved in this sport. We chose a compromise between the two standard Olympic competition distances and a standard training walking pace to suit the training programmes of our subjects. In order to provide suitable conditions both for our laboratory measurements and the walking exposure, the measured walk was divided into periods which began and ended on a treadmill with the intervening time spent walking on a nearby cinder track.

METHODS

Twenty national competition class race-walk men (ten 20 km specialists and ten 50 km specialists) were studied in a controlled routine lasting 4 hr which included time to take pre-exercise and 30 min post-exercise measurements. The total exercise routine comprised 3 hr divided into six 30 min periods of which the first and last were spent entirely on the treadmill. The other four were strictly regulated by stopwatch to control time taken to race-walk to and from the cinder track and for timed laps on the track, a total involve-
The data for each athlete were passed through a computer programme designed to calculate: corrected \(V_E \), 'true \(O_2 \)' uptake, R.Q., \(O_2 \) calorific value and energy expenditure corrected for surface area. There were then averaged. The factor for correcting the expired air values was obtained from Carpenter (1968), 'true \(O_2 \)' was calculated from the nomogram by Dill et al., and the surface area from the nomogram of Dubois & Dubois both of which are in Consolazio, Johnson & Pecora (1963). The calorific value of \(O_2 \) in kJ/LO\(_2\) was derived from the equation: 19.606+ (R.Q. - 0.707)/5.154 which is applicable within limits of R.Q. = 1.00 to 0.66. This information is also given in Åstrand & Rodahl (1978) and Documenta Geigy (1970).

DISCUSSION OF RESULTS

The results are given in the two tables. Table I B repeats the R.Q. values of Table II in order to allow immediate comparison with heart-rate and body-weight taken at the same times in the routine. The pre-exercise values for R.Q. were compared statistically in a paired t test with the ½ hr post-exercise resting values and were found to differ highly significantly, \(P < 0.001 \). It is also worth commenting on body weight loss given in Table I B. Compared to our expectations from occasional measurements taken at competitive events, we have not found a great weight loss and its significance as an index of recovery is reduced by post-exercise drinking. During competitive events race-walkers follow quite individual habits in drinking water; some drink nothing during the events and others drink plentifully. However, this varies considerably with climatic conditions, total distance and speed of walking. For this experimental study the weather conditions were uniformly pleasantly cool and the walking pace was 1 km/hr slower than the best of our athletes would expect to use in competition for 35 km.

The pace of 11.6 km/hr for 3 hr was designed to give a 'good' level of work but both the rates of \(O_2 \) uptake and the heart-rates at the point of stopping exercise, confirm that the exercise was submaximal. The average energy cost calculated from the values during the exercise routine was 50.5 kJ/min. This is less than 50% of Margaria's (1972) predicted maximum anaerobic capacity value based on 1.6 kJ/min.kg which for our

<table>
<thead>
<tr>
<th>Sample period</th>
<th>(V_E)</th>
<th>(O_2) uptake</th>
<th>R.Q.</th>
<th>(O_2) energy value</th>
<th>energy cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L/min</td>
<td>L/min</td>
<td></td>
<td>kJ/L</td>
<td>kJ/min</td>
</tr>
<tr>
<td>BEFORE EXERCISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>resting</td>
<td>7.8 ± 2.4</td>
<td>0.35 ± 0.16</td>
<td>0.87 ± 0.13</td>
<td>20.5 ± 1.1</td>
<td>7.1 ± 1.1</td>
</tr>
<tr>
<td>DURING EXERCISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>end of ½ hr</td>
<td>52.0 ± 8</td>
<td>2.23 ± 0.2</td>
<td>0.92 ± 0.14</td>
<td>20.7 ± 0.1</td>
<td>46.2 ± 4.7</td>
</tr>
<tr>
<td>end of 1 hr</td>
<td>58.0 ± 17</td>
<td>2.43 ± 0.2</td>
<td>0.86 ± 0.19</td>
<td>20.4 ± 0.2</td>
<td>49.7 ± 16.6</td>
</tr>
<tr>
<td>end of 1½ hr</td>
<td>52.2 ± 9</td>
<td>2.44 ± 0.2</td>
<td>0.82 ± 0.18</td>
<td>20.2 ± 0.3</td>
<td>49.2 ± 5.2</td>
</tr>
<tr>
<td>end of 2 hr</td>
<td>52.6 ± 6</td>
<td>2.52 ± 0.4</td>
<td>0.77 ± 0.17</td>
<td>19.9 ± 0.3</td>
<td>50.3 ± 5.0</td>
</tr>
<tr>
<td>end of 2½ hr</td>
<td>53.4 ± 6</td>
<td>2.65 ± 0.6</td>
<td>0.72 ± 0.17</td>
<td>19.7 ± 0.2</td>
<td>52.1 ± 5.0</td>
</tr>
<tr>
<td>end of 3 hr</td>
<td>56.5 ± 7</td>
<td>2.86 ± 0.5</td>
<td>0.66 ± 0.17</td>
<td>19.4 ± 0.1</td>
<td>55.4 ± 6.0</td>
</tr>
<tr>
<td>Average energy cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min AFTER EXERCISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>resting</td>
<td>9.5 ± 3</td>
<td>0.38 ± 0.2</td>
<td>0.66 ± 0.18</td>
<td>19.4 ± 0.2</td>
<td>7.3 ± 1.2</td>
</tr>
</tbody>
</table>
athletes gives $1.6 \times 68.5 = 109$ kJ/min. Thus it is most probable that the energy cost of the exercise was met entirely from aerobic metabolic mechanisms and the gradual progressive rise in energy level during the routine indicates an elevation in aerobic activity. This has been proposed by Costill (1970) who studied marathon runners and by Margaria who studied middle distance runners and it would explain our results for race-walkers.

The progressive and marked decrease of R.Q. during the exercise routine indicates rapid depletion of liver glycogen stores and consequent shift to fat as the major energy source. Åstrand and Rodahl (1978) discuss this at length and suggest that fat may be the greatest fuel source for muscular work in long duration submaximal work conditions below the level of anaerobic involvement. Our R.Q. values confirm this view. Additionally, while the heart-rate values indicate that much of recovery may have been completed by 30 min the R.Q. values do not support this assumption; they indicate that while the R.Q. is depressed, recovery of the athletes is incomplete. Unfortunately, it was impossible to collect further R.Q. values on our group of race-walkers and follow their complete recovery. But, we were able to study one subject in detail and found that he took 27 hr to recover to his pre-exercise value. This obviously requires further work and extension of the original routine to study the full recovery period. It will also require an unusually cooperative group of athletes willing to participate in an extended experiment during the final period of training. However, we feel there is sufficient information even in this study to suggest that R.Q. should be used as an index of recovery after exposure to long durations of activity in this type of sport.

ACKNOWLEDGEMENT

We are most grateful to Mr. Alan Willcocks for doing the gas analyses.

REFERENCES

Progressive changes in energy cost during a three-hour race-walk exercise.

G. R. Farley and E. J. Hamley

doi: 10.1136/bjsm.12.4.176

Updated information and services can be found at:
http://bjsm.bmj.com/content/12/4/176

These include:

Email alerting service
Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/