CASE REPORT

CYCLIST’S PALSY: CLINICAL AND ELECTRODIAGNOSTIC FINDINGS

Walter R. FRONTERA, MD
Department of Physical Medicine and Rehabilitation,
University of Puerto Rico, School of Medicine

ABSTRACT

Electrodiagnostic findings in cyclist’s palsy have rarely been reported. The purpose of this paper is to report a case and discuss clinical and electrodiagnostic findings. Possible aetiologies are presented and preventive measures emphasised.

Key Words: Hand injuries, Athletic injuries, Ulnar nerve, Cyclist’s palsy.

INTRODUCTION

In 1896, Destot described the first case of an ulnar nerve lesion at the level of the pisiform bone in a bicycle rider. Since then a number of similar cases have been published in the literature (Eckman et al, 1975, Kulund and Brubaker, 1978).

This type of lesion can produce sensory and motor deficiencies in the hand. Nerve conduction and electromyographic studies are helpful in documenting the extent of the lesion and the time course of recovery (Noth et al, 1980). As far as we know only three cases have been reported with nerve conduction and electromyographic findings (Krause and Berlit, 1981; Noth et al, 1980).

The purpose of this paper is to present a case of cyclist’s palsy. Clinical and electrodiagnostic findings are discussed. The time course of the lesion, possible aetiologies and preventive interventions are presented.

CASE HISTORY

A twenty-seven year old left-handed man, member of the Puerto Rican cycling team to the XIV Central American and Caribbean Games (August, 1982), came complaining of left hand weakness and numbness of three days duration. The symptoms started 20 kilometres into the 100 km against-the-clock team competition. He first noted difficulty in handling manual bicycle brakes. He was unable to participate in other competitions during the rest of the games due to pain, grip weakness and numbness over the left ulnar-palmar distribution. The right hand was asymptomatic.

He denied trauma to upper extremity or neck, history of any metabolic condition or drug use. On two previous occasions he had mild symptoms similar to those described above associated with prolonged cycling but with no neurological sequelae.

On examination three days after the competition the patient presented hypo-aesthesia over the left hypothenar eminence, little finger and medial aspect of the ring finger. No sensory deficit was noted in the dorsum of the hand. Both fingers showed also hyperextension of the metacarpophalangeal joint (MCP) and flexion of the proximal interphalangeal joint (PIP). Moderate paresis of hand grip, finger abduction and adduction and positive Froment’s sign were also noted. (Froment’s Sign: Flexion of the distal phalanx of the thumb when a sheet of paper is held between the thumb and index finger; seen in affections of the ulnar nerve. Indicates activity of the flexor pollicis longus (median nerve), in an effort to compensate for paralysis of the adductor pollicis (ulnar nerve).) The rest of the neurological examination was negative.

Four weeks later the patient complained of weakness
and decreased sensation. Mild to moderate atrophy of
the interosseus muscles and hypothenar eminence was
present. He continued with sensory and motor deficits
as described above. Nerve conduction studies showed
distal latencies to the left abductor digiti minimi (ADM)
and first dorsal interosseus (FDI) of 3.7 milliseconds and
5.4 milliseconds respectively. (Normal values: 2.7 ±
.49 and 4.0 ± .65 respectively (Bhala and Goodgold,
1968)). Conduction velocity from above the elbow to
the wrist was normal (60 m/sec). Distal latencies in
the right hand were normal. Antidromically measured
sensory distal latency to the left fifth finger was 5.1
msec. (Normal value: 3.2 ± .25 (Schuchmann and
Braddock, 1980)).

An electromyogram showed positive waves in the left
ADM and FDI. Interference pattern was incomplete in
both muscles. No abnormalities were noted in the left
flexor carpi ulnaris and right hand muscles. There were
no polyphasic potentials.

Examination four weeks later (eight weeks from the
start of the symptoms) showed improvement in left
hand grip strength. Sensory symptoms were minimal and
the patient referred significant improvement in hand
skills. Distal latencies were 3.6 msec and 4.0 msec to the
left ADM and FDI. Sensory distal latency was 4.0 msec.

Needle examination showed positive waves and poly-
phasic potentials (400-600 microvolts) in the left ADM
and FDI. Biphasic motor units of increase amplitude
(10 millivolts) were also observed.

The third examination performed 3 months after
the start of the symptoms showed no sensory or motor
deficit. The patient was completely asymptomatic.
Distal latencies to the left ADM and FDI were 3.8 and
4.1 milliseconds. Sensory latency was 4.0 milliseconds.

Needle examination showed no positive waves or
fibrillation potentials. Polyphasic motor units of 1-2
millivolts of amplitude and biphasic units of 5-10 milli-
vols of amplitude were also present.

DISCUSSION
Cyclist's palsy is an ulnar nerve compression at the level
of the hand (Eckman et al, 1975). Shea and McClain
(1969) divided compression syndromes of the ulnar
nerve in three groups. Type I involves both the super-
ficial and deep palmar branch. Type II involves only the
deep terminal branch resulting in motor deficits with
sensory function intact. Type III involves only the
superficial terminal branch resulting in no motor deficit.
Loss of sensory function in the latter type is limited to
the palmar aspect of the hand and excludes the dorsal
ulnar aspect. As a rule both, the superficial sensory and
depth motor branch of the ulnar nerve are involved in
cyclist's palsy (Noth et al, 1980).

The mechanism leading to the nerve lesion has not
been described conclusively. Factors such as pressure
over the hypothenar eminence and prolonged hyper-
extension of the wrist (Eckman et al, 1975), worn out
gloves and unpadded handlebars (Kulund and Brubaker,
1978) and transmission of vibration in rough roads
(Hoyt, 1976) have been implicated. Our patient
admitted he was putting pressure over the hypothenar
eminence, maintaining the wrist in hyperextension and
using unpadded handlebars.

Recovery from cyclist's palsy tends to be spontane-
ous (Noth et al, 1980). Our patient limited cycling to
occasional non-competitive short sessions, used handle-
bar padding and corrected inadequate hand position.
This proved to be adequate and by 3 months he had no
symptoms or clinically evident neurological deficit.

Electromyographic evidence of axonal damage was
evident four weeks after the symptoms started and
evidence of reinnervation was present four weeks later.
Nerve conduction studies showed a tendency to improve
with decreased distal latency.

To conclude: ulnar nerve lesion at the level of the
hand can be produced by prolonged cycling. Electro-
diagnostic techniques are useful in the diagnosis and
follow-up of this condition. Motor distal latencies to
both ADM and FDI should be measured. Sensory distal
delay should also be obtained. Needle examination is
useful to determine evidence of reinnervation. Both
terminal branches of the ulnar nerve are affected. The
condition tends to recover spontaneously. Preventive
measures include padding of the handle and adequate
hand positioning.

REFERENCES

BOOK REVIEW

Title: ORTHOPAEDIC DIAGNOSIS
Author: Hans U. Debrunner, MD. Translated by Gottfried Stiasny, MD, 1982
Price: £11.50

This book might have been better titled Orthopaedic Measurement for it is much more concerned with anthropometric information than with diagnosis. Many of the measurements mentioned are unrelated to abnormal states. For instance we are told that arm span x 1.03 ± .02 = body length but not what or how it helps us diagnose anything. We are informed that taking a history and doing an examination is very important but there is a paucity of information on the interpretation and the eliciting of physical signs.

Kyphosis is measured clinically with a kyphometer (how biometric can you get) yet a kyphos and its significance is omitted.

There are some bad editorial lapses such as illustration B p. 103 which is that of a totally intrinsic minus hand and is not a typical ulnar claw hand as labelled.

The test is tortured by a translation which lacks vernacular which makes it irksome to read as illustrated by these examples.

“‘The procurement of the history also serves to deepen the human contact . . . shocking questions should be avoided and the amanuensis should if necessary be compiled at a later date”.

or

“‘The stay of the blood in the veins can be ascertained by, etc. . .’

or

this sentence which eluded comprehension

“however subjective and mixed information is valuable because it allows the compiling of a record of complex findings that would be nearly impossible to define as subjective information”.

I am at a loss to identify an audience for the sort of information this book presents so I do not know to whom it should be recommended.

B. Helal
Cyclist's palsy: clinical and electrodiagnostic findings.

W. R. Frontera

doi: 10.1136/bjsm.17.2.91

Updated information and services can be found at:
http://bjsm.bmj.com/content/17/2/91

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/