Physiological profiles of Hong Kong élite soccer players

Ming-Kai Chin PhD, Y. S. A. Lo MD FRCP*, C. T. Li MPhil MCSP† and C. H. So MPhil†
Sports Science Department, Hong Kong Sports Institute; *Hong Kong Heart Centre and †Department of Orthopaedics and Traumatology, Chinese University of Hong Kong

Most physiological profiles of élite soccer players originate from Western Europe and North America. Unfortunately, there is a scarcity of descriptive data on the physical characteristics of Asian soccer players. Therefore, the purpose of this study was to evaluate the physiological profiles of élite soccer players in Hong Kong. It was conducted in conjunction with the selection of the Hong Kong team before the 1990 Beijing Asian Games. In all, 24 professional soccer players were selected from a pool of 180 players as subjects for the study. The following means(s.d.) were observed: height 173.4(4.6) cm; weight 67.7(5.0) kg; body fat 7.3(3.0)%; forced vital capacity (FVC) 5.1(0.6) l; maximum oxygen uptake (VO_2max) 59.1(7.2) ml kg^{-1} min^{-1}; anaerobic threshold (AT) 80.0(7.2)% of VO_2max; lactic power index 13.5(2.4) W kg^{-1}; lactic work index 298(27) J kg^{-1}; peak isokinetic dominant knee extensor and flexor strengths 2.72(0.36) Nm kg^{-1} and 1.65(0.20) Nm kg^{-1}. On average the physique of Hong Kong soccer players appeared to be smaller and lighter than those found in Europe, which may be one of the key factors that contribute to the lack of success of Hong Kong soccer teams in international competition.

Keywords: Soccer, élite athletes, oxygen uptake, body composition, isokinetic strength, anaerobic power

Despite the large number of soccer players in Asia, research dealing with the performance capacity of élite Asian soccer players is lacking. Most physiological data on élite soccer players originate from Western Europe and North America. To the best of the authors’ knowledge, there have been no comprehensive reports on the physiological characteristics of Asian soccer players. A comparison of such data with those of international soccer teams may shed light on factors contributing to the lack of success of Hong Kong soccer teams in international competition. Since this is the first study describing the physiological profiles of Hong Kong players, it provides baseline data against which future studies can be compared.

Method

In all, 24 top Hong Kong professional soccer players of ethnic Chinese origin volunteered to participate in the study before selection of the national team for the 1990 Beijing Asian Games. The subjects were nominated by the Hong Kong Football Association from a pool of 180 professional players of nine first division teams. Informed consent was obtained from all subjects before testing. The test battery included measures of body composition, pulmonary function, maximal aerobic power, anaerobic threshold, anaerobic power, flexibility and muscle strength. All tests with the exception of the field tests took place at the Human Performance Laboratory of the Hong Kong Sports Institute (HKSI).

Percentage body fat was estimated from skinfold measurements using a Harpenden skinfold caliper (Quinton Instrument, Seattle, Washington, USA) at three different sites on the body surface. The Vitalograph-Compact spirometer (Vitalograph, Buckingham, UK) was used to evaluate pulmonary functions by calculating the forced vital capacity (FVC), forced expired volume in one second (FEV,1) and maximal voluntary ventilation (MVV).

Maximal oxygen uptake (VO_2max) was measured using a continuous running test performed on a Quinton 65 treadmill (Quinton Instrument, Seattle, Washington, USA). All subjects were familiarized with the testing procedures before data collection. After a 10-min warm-up at 8.05 km h^{-1} (0% grade), the subject began running at a velocity of 12.1 km h^{-1} (0% grade). Every 2 min thereafter, the grade was increased by 2.5% until volitional exhaustion. Metabolic and respiratory measurements were obtained using a Gould 2900 Energy Expenditure Unit (Sensormedics, Yorba Linda, California, USA) and included VE, VO_2, VCO_2, RQ, FECO_2 and FEO_2 which were computed and displayed every 20 s. Anaerobic threshold (AT) measurements were determined by observing the onset of the non-linear relationship between VO_2 and V_E-VCO_2 and were expressed relative to oxygen consumption (% VO_2max) and heart rate (% HRmax).

Anaerobic power was measured according to the procedure developed to accompany the REPCO front access cycle ergometer (EX10, Repco Cycle, Huntingdale, Australia) and work monitor unit (EX50). The
Physiological profiles of Hong Kong elite soccer players: M.-K. Chin et al.

protocol is described in detail elsewhere\(^5\). Briefly, the subject was required to perform a maximal-effort standing cycle test over 10 s to assess work capacity and peak power. After another 2 min rest, the soccer player was required to perform 30 s of maximal standing cycle ergometry.

Maximal strength of extensor and flexor muscles of each knee was measured using an isokinetic dynamometer (Cybex II+, Lumex, New York, USA). After a warm-up, five consecutive maximal contractions were performed at 60°s \(^{-1}\); peak torque was recorded as the highest value of the trials. The strength ratio between knee flexors and knee extensors of each leg (hamstring:quadriceps (H:Q) ratio) was also calculated.

The field test evaluation consisted of an endurance run, the Cooper 12-min run–walk test for distance\(^10\) and sit-and-reach test for flexibility. The endurance run was conducted outdoors on a tartan-surfaced, 400-m track. The sit-and-reach test was used to test lower back and hamstring flexibility.

The physiological profile of the Hong Kong players was compared with that of top soccer teams from other countries. Direct statistical comparisons could not be performed, since raw data were not available.

Results and discussion

Anthropometry

The physical characteristics of the subjects are presented in Table 1. As a group, the average age (26 years) was comparable with other studies of top soccer teams\(^11\). Height (173.4 cm) and weight (67.7 kg) tended to be lower compared with first division English league soccer players (180.4 cm; 76.7 kg)\(^12\) and Italian professional soccer players (177.2 cm; 74.4 kg)\(^13\). Body size represents ethnic, racial and possibly nutritional influences. Generally, the percentage of body fat of an adult male in his mid-20s is 15–16% of body weight. The subjects used in the study were lean, with a percentage of body fat of 7.3, which appears to be lower than that of Canadian Olympic soccer players (9.8%)\(^14\), Australian soccer players (9.7%)\(^14\), US professional soccer players (9.6%)\(^1\), US national soccer players (9.5%)\(^15\), Kuwaiti world cup soccer players (8.9%)\(^3\) and Brazilian soccer players (10.7%)\(^16\).

Pulmonary functions

All pulmonary function variables (Table 2) measured in this study were above normal limits for the age group 19–34 years of the Hong Kong Chinese\(^17\). FVC (5.1 l) values appear to be higher than those of first division league Yugoslavian players (4.9 l)\(^18\), Indian national players (4.1 l)\(^19\) but comparatively lower than those of English league players (5.8 l)\(^20\) and Dallas Tornado professionals (5.3 l)\(^5\).

The mean FEV\(_{1.0}\) (4.2 l; % FVC = 82.4), and MVV (169.0 l) in this study demonstrated a high efficiency of the respiratory muscles at which air can be breathed in and out to supply the oxygen transport system. However, it is not surprising that the subjects exhibited lower pulmonary values compared with other endurance athletes such as cross-country runners (FVC = 5.7 l, Reference 21; MVV = 207.5 l, Reference 22) because of the intermittent bursts of intense action in which players frequently rely on anaerobic mechanisms.

Cardiorespiratory fitness

Data on selected aerobic capacity and cardiorespiratory fitness of the subjects are presented in Table 3. Mean \(VO_2\space max\) (59.1 ml kg\(^{-1}\) min\(^{-1}\)) for the subjects appears to be lower than the values reported for a group of top-level Australian players (62 ml kg\(^{-1}\) min\(^{-1}\))\(^23\), the German national team (62 ml kg\(^{-1}\) min\(^{-1}\))\(^24\), the national Swedish team (61 ml kg\(^{-1}\) min\(^{-1}\))\(^25\), the national Canadian team (58.7 ml kg\(^{-1}\) min\(^{-1}\))\(^26\), and the Austrian national team (58.3 ml kg\(^{-1}\) min\(^{-1}\))\(^27\). The Kuwaiti World Cup team appeared to have a lower \(VO_2\space max\) than the Hong Kong players (51.9 ml kg\(^{-1}\) min\(^{-1}\)) (Reference 5). The maximal aerobic power of elite soccer players seems to have values around 65–67 ml kg\(^{-1}\) min\(^{-1}\) (References 25–27), which reflect a fairly high aerobic demand, but less than that of other endurance events such as distance running, cycling, cross country skiing, etc. It is interesting to note the lower \(VO_2\space max\)

<p>| Table 1. Physical characteristics of Hong Kong elite soccer players (n = 24) |</p>
<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean(s.d.)</th>
<th>(range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>26.3(4.2)</td>
<td>(19–36)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>173.4(4.6)</td>
<td>(166.7–179.5)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>67.7(5.0)</td>
<td>(67.3–76.4)</td>
</tr>
<tr>
<td>Lean body weight (kg)</td>
<td>62.4(2.2)</td>
<td>(52.1–70.3)</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>7.3(3.0)</td>
<td>(4.2–15.4)</td>
</tr>
</tbody>
</table>

<p>| Table 2. Selected pulmonary function measurements of Hong Kong elite soccer players (n = 24) |</p>
<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean(s.d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (l)</td>
<td>5.1(0.6)</td>
</tr>
<tr>
<td>FEV(_{1.0}) (l)</td>
<td>4.2(0.6)</td>
</tr>
<tr>
<td>FEV(_{1.0}) (%)</td>
<td>82.4(5.0)</td>
</tr>
<tr>
<td>MVV (l min(^{-1}))</td>
<td>169.0(36.0)</td>
</tr>
</tbody>
</table>

FVC = forced vital capacity; FEV\(_{1.0}\) = forced expiratory volume at 1.0 s; MVV = maximum voluntary ventilation

\(VO_2\space max\) = \(VO_2\space max\) (ml kg\(^{-1}\) min\(^{-1}\)) (Reference 3).

\(VO_2\space max\) = \(VO_2\space max\) (ml kg\(^{-1}\) min\(^{-1}\)) (Reference 3).

\(VO_2\space max\) = \(VO_2\space max\) (ml kg\(^{-1}\) min\(^{-1}\)) (Reference 3).

Br J Sp Med 1992; 26(4) 263
values of the Kuwaiti soccer players, an Asian team which qualified in the top 24 teams in the world in 1982. This may suggest that a higher aerobic capacity may not be a critical factor in determining success.

The mean(s.d.) maximal heart rate (179(7)) of the subjects tended to be lower than that of the 1978 Argentina team (194(10))28 and Austrian national team (194(6))29, but similar to that of the 1984 West German national team (176(8))30 and English league first division players (179(2))31. Reported mean(s.d.) values of $V_{\text{O}_2 \text{max}}$ for soccer players varied from 108.3(16.9) l min$^{-1}$ (Reference 30) to 153.6(4.1) l min$^{-1}$. The values found in the current study (136.0(13.4) l min$^{-1}$) were within this range but are well below those achieved by elite cyclists (1831 min$^{-1}$)31 and professional basketball players (1681 min$^{-1}$)32. The mean(s.d.) oxygen pulse value of the subjects (21.9(2.1) beat$^{-1}$) appeared to be lower in comparison to the highest average values reported for a German league team (29.1 beat$^{-1}$), 1974 and 1981 national German teams (27.91 beat$^{-1}$ and 28.21 beat$^{-1}$) (Reference 24), and East German first division soccer players (24.01 beat$^{-1}$) (Reference 33).

The measured anaerobic threshold as a percentage of $V_{\text{O}_2 \text{max}}$ (80.0%) for the Hong Kong team is similar to that for the Canadian national soccer team (80.5%)4, which is relatively high for trained athletes. The high ATs of the Hong Kong soccer players can be attributed, at least in part, to the specific inclusion of intermittent, high-intensity exercise in their training programme.

A reported study18 on heart rate values during the game indicated that the heart rate was above 85% of maximum for two-thirds of the time and it is suggested that the average oxygen consumption during a normal game can be close to 80% of maximal oxygen uptake28. Mean heart rates of 157 and 175 beats min$^{-1}$, respectively, were also recorded from English league players31 and from a top player in the Swedish team during a match35. It is interesting to note that the anaerobic threshold data collected during the present study (80.0% $V_{\text{O}_2 \text{max}}$, 88.9% HR$_{\text{max}}$ and 159 beats min$^{-1}$) is similar to these previous reports. It is reasonable to suggest that a competitive football match may require Hong Kong soccer players to exercise close to their anaerobic thresholds for long periods of the game.

Flexibility and endurance capacity

Field test results for flexibility and 12-min run in Table 4 showed low values for Hong Kong team members compared with other studies4,4,30. Soccer players in general have been found to be less flexible than non-athletes with the exception of goalkeepers7, and 67% of all players in one study had one, or several, tight muscles in the lower extremities38. The mean sit-and-reach value measured in the present study (31.0 cm) was even lower than that for the average untrained individual (range 35–40 cm)39, the Canadian Olympic soccer team (40.5 cm)31 and Dallas soccer team (51.3 cm)31. This poor flexibility indicated tight hamstrings which may be due to the design of soccer training and the need for specific stretching to increase the range of motion in order to reduce the incidence of soccer injuries.

The mean 12-min run for distance (2892 m) in the present study was similar to that reported for the Dallas Tornado professionals (2993 m), but comparatively lower than the Brazilian national soccer team (3540 m)31.

Anaerobic power

The anaerobic power data of Hong Kong soccer players and a comparison with other Hong Kong and Australian elite athletes3 are presented in Table 5. The mean(s.d.) alactic power index (13.5(2.4) W kg$^{-1}$); alactic work index (103(20) J kg$^{-1}$); and lactic work index (298(27) J kg$^{-1}$) measured in this study were comparatively lower than for cyclists, badminton players, squash players and swimmers. A sprint test on a bicycle ergometer, used to evaluate maximal anaerobic alactic power in national Swedish soccer players, found a similar value of 13.5 W kg$^{-1}$. This is only approximately 10% higher than in untrained controls39. A stair-run test to measure the anaerobic power of Olympic soccer players in one study40 found that anaerobic power was less than in pentathletes, sprinters and middle-distance runners. The soccer players in the present study were found to be only average in anaerobic power in comparison with other sportsmen in Hong Kong.

Isokinetic knee strength

The torque output in the joint actions of the knee were assessed because they are important in the skills of kicking and shooting. The mean peak torque

Table 5. Anaerobic power tests – comparative figures from Hong Kong and Australian team athletes

<table>
<thead>
<tr>
<th>Sport</th>
<th>n</th>
<th>Mean(s.d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alactic work index (W kg$^{-1}$)</td>
</tr>
<tr>
<td>Soccer (HK team, present study)</td>
<td>24</td>
<td>13.5(2.4)</td>
</tr>
<tr>
<td>Cycling (HK team)</td>
<td>6</td>
<td>17.0(2.0)</td>
</tr>
<tr>
<td>Badminton (HK team)</td>
<td>8</td>
<td>17.1(2.0)</td>
</tr>
<tr>
<td>Squash (HK team)</td>
<td>5</td>
<td>15.0(2.0)</td>
</tr>
<tr>
<td>Squash (Australian state team)</td>
<td>7</td>
<td>14.7(2.1)</td>
</tr>
<tr>
<td>Swimming (Australian national team)</td>
<td>63</td>
<td>14.3(1.5)</td>
</tr>
<tr>
<td>Volleyball (Australian national team)</td>
<td>16</td>
<td>16.3(1.6)</td>
</tr>
</tbody>
</table>

output of the knee flexion and extension and the comparative data from other Hong Kong team athletes are presented in Table 6. The mean(s.d.) knee extension (quadriceps) values 2.72(0.36) Nm kg\(^{-1}\) at 60 s\(^{-1}\) were similar to those of the Singapore national soccer team (2.66(0.57) Nm kg\(^{-1}\) at 60 s\(^{-1}\))\(^4\), but somewhat lower than those of the Chinese national soccer team (3.10(0.33) Nm kg\(^{-1}\) at 60 s\(^{-1}\))\(^4\), and Hong Kong elite athletes in badminton, cricket, cycling, squash, tennis, waterpolo and cricket. Isokinetic measurements on the knee strength of elite soccer players were mostly conducted at an angular velocity of 30 s\(^{-1}\) (References 2, 3, 4, 43). Trial tests at 30 s\(^{-1}\) had been conducted previously at our laboratory using 70 other Hong Kong elite athletes and soccer players and the majority of subjects felt pain during the test and were not willing to continue. Since no previous literature had been reported for Asian athletes using an angular velocity of 30 s\(^{-1}\), the question of whether a comparatively smaller body size and level of absolute strength contributes to muscle pain needs further investigation.

It has been known for some time that muscle strength imbalance can predispose an athlete to injury\(^7\) and that isokinetic testing can serve as a tool for screening. The relationship of hamstring to quadriceps strength (H:Q ratio), an index for muscle strength balance, varies between 50% and 62% in healthy people\(^4\). Sixty percent has been suggested as an ideal proportion\(^45,46\). The H:Q ratio of the Hong Kong soccer players (60%) tended to be higher than that of the Chinese national soccer team (51.7%)\(^4\) and fell within the recommended range.

This is the first and most comprehensive physiological profile study of Hong Kong elite soccer players and, to the authors’ knowledge, the most comprehensive investigation on Asian soccer players. The test data do provide a good baseline and reference for coaches, sports physiologists, physiotherapists and future investigators. Though soccer players are the only professional athletes in Hong Kong, physiological data show that the players tend to be smaller, comparable in cardiorespiratory fitness and anaerobic power, and appear to be lower in muscle knee strength, and poor in flexibility in comparison with data collected from other soccer teams and Hong Kong elite sportsmen. All tests suggest strongly that if the team wants to achieve reasonable success in international competition, improvements in physical fitness need to be emphasized in addition to skill training. The selection of soccer players with height and weight comparable to those of the best teams of European origin may be one way to compensate for the ethnic disadvantages of being smaller in size.

Acknowledgements

This study was supported in part by a research grant from Hong Kong Sports Development Board. The authors are sincerely grateful for the support of Mr Kwok Ka Ming, the HKSI senior head coach, and the Hong Kong soccer players, who participated in the study. They also express their appreciation to Mr Dennis Whitty for his review and to Miss Queenie Tam for her clerical assistance in the preparation of the manuscript.

References

Table 6. Peak torque outputs of the knee – comparative figures from Hong Kong team athletes (measured in Nm kg\(^{-1}\) at 60 s\(^{-1}\)). Data are presented for the dominant knee

<table>
<thead>
<tr>
<th>Sport</th>
<th>n</th>
<th>Extension Mean(s.d.)</th>
<th>Flexion Mean(s.d.)</th>
<th>Flexion: extension ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soccer (present study)</td>
<td>24</td>
<td>2.72(0.36)</td>
<td>1.65(0.20)</td>
<td>60.0</td>
</tr>
<tr>
<td>Cycling, road</td>
<td>10</td>
<td>3.27(0.38)</td>
<td>1.88(0.29)</td>
<td>60.0</td>
</tr>
<tr>
<td>Badminton</td>
<td>11</td>
<td>3.42(0.43)</td>
<td>1.89(0.28)</td>
<td>55.5</td>
</tr>
<tr>
<td>Squash</td>
<td>5</td>
<td>2.97(0.32)</td>
<td>1.78(0.25)</td>
<td>60.0</td>
</tr>
<tr>
<td>Tennis</td>
<td>7</td>
<td>2.89(0.31)</td>
<td>2.02(0.44)</td>
<td>69.8</td>
</tr>
<tr>
<td>Water polo</td>
<td>12</td>
<td>2.86(0.28)</td>
<td>1.56(0.19)</td>
<td>55.7</td>
</tr>
<tr>
<td>Cricket</td>
<td>18</td>
<td>2.77(0.41)</td>
<td>1.57(0.21)</td>
<td>56.7</td>
</tr>
</tbody>
</table>
Physiological profiles of Hong Kong elite soccer players: M.-K. Chin et al.

Physiological profiles of Hong Kong élite soccer players.

M K Chin, Y S Lo, C T Li and C H So

doi: 10.1136/bjsm.26.4.262

Updated information and services can be found at:
http://bjsm.bmj.com/content/26/4/262

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/