Plasma lipid, lipoprotein and apolipoprotein profiles in Nigerian university athletes and non-athletes

O. O. Oyelola PhD and M. A. Rufai MB ChB
Department of Chemical Pathology and Institute of Physical Education, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria

The fasting plasma lipid, lipoprotein and apolipoprotein profiles were determined in 14 healthy Nigerian male athletes and controls matched for age and anthropometric parameters. The mean levels of total cholesterol ($P < 0.05$), low-density lipoprotein (LDL) cholesterol, apolipoprotein (apo) A and E were significantly lower ($P < 0.01$) in the athletes than in the controls. However, there were no statistically significant differences ($P > 0.05$) between the mean values of the plasma triglycerides, high-density lipoprotein (HDL), very low-density lipoprotein (VLDL) cholesterol, apo A1, B, Lp(a), LpA1 and CIII:NonB respectively for the athletes and controls. *A priori*, the potential effect on cardiovascular disease (CVD) risk was also compared using three predictor ratios – total cholesterol: HDL cholesterol (TC:HDL), LDL cholesterol: HDL cholesterol and apo B:AI. The mean of the three ratios was lower in the athletes than in the controls; however, the differences were not statistically significant ($P > 0.05$). Based on our data, exercise appears to decrease the TC:HDL ratio in the athletes by lowering LDL cholesterol, while the HDL-cholesterol is unaffected. We conclude that physical activity has salutary effects on the lipid, lipoprotein and apolipoprotein profiles of healthy Nigerian men.

Keywords: Physical activity, lipids, lipoproteins, apolipoproteins, cardiovascular disease

Research interest in lipids and lipoprotein metabolism has increased due to the establishment of the roles played by lipids, lipoproteins and apolipoproteins in the development of cardiovascular disease (CVD). Plasma lipid and lipoprotein levels have been shown to be influenced by age, sex, socioeconomic status, genetics, race, diet, cigarette smoking, coffee and alcohol intake, and medication as well as habitual and leisure time physical activity.

Increased physical activity has been reported to produce favourable changes in the lipid and lipoprotein profiles. These changes are also influenced by sex, diet, intensity of exercise, body weight and percentage body fat.

In black Africans, there is a relatively lower level of risk factors and incidence of CVD when compared with Caucasians and other Blacks in industrialized countries. Less severe atherosclerotic lesions of the aorta, coronary and cerebral arteries have also been reported in black Africans. There are presently few published reports on lipids in black athletes. These studies examined the effect of exercise on body fats, cholesterol and triglyceride. Therefore, we examine in detail the plasma lipid, lipoprotein and apolipoprotein profiles, and three CVD predictor ratios in some Nigerian athletes and a matched control group.

Subjects and methods

Fourteen healthy male athletes (mean(s.d.) age 22(4); range 18–28 years) at the Institute of Physical Education, Obafemi Awolowo University, Ile-Ife, Nigeria and 14 healthy non-athletes (mean age 24(5); range 18–31 years) at the same university served as controls. All participants gave their consent before the study. The athletes were all well trained, elite short/medium distance (100, 200 or 400 m) runners of the university team, and they had been running for 4–8 years. They had been undergoing moderate physical training (running 5–10 km) 3–5 days per week for about 4 weeks before the study.

The athletes and the control group were matched ($P > 0.05$) for age, weight, height, body mass index (BMI) determined by a nomograph, and systolic and diastolic blood pressure (Table 1). The subjects were all non-smokers and were not taking any medication at the time of study. They were all on the same university regular diet, and were also told to abstain from alcoholic beverages for at least 2 weeks before sampling.

Table 1. Characteristics of the athletes and controls

<table>
<thead>
<tr>
<th></th>
<th>Athletes</th>
<th>Control</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>22(4)</td>
<td>24(5)</td>
<td>n.s.*</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>65(9)</td>
<td>61(6)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>172(9)</td>
<td>168(8)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Body mass index (kg m$^{-2}$)</td>
<td>22(2)</td>
<td>22(3)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Blood pressure (mmHg)</td>
<td>117(8)</td>
<td>120(13)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Systolic</td>
<td>79(11)</td>
<td>79(6)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Diastolic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are mean(s.d.); *n.s.*, Not statistically significant ($P > 0.05$)
Collection of blood samples

Fasting blood samples (10–12 h after the last meal) were collected from each subject (about 12 h after physical exercise in the athletes) into sodium-EDTA anticoagulant. The plasma was separated within 2 h of collection in a refrigerated centrifuge (Damon/IEC B-20A) precooled to 4°C at 1500 g for 15 min, and stored at −80°C before analysis.

Plasma lipids and lipoprotein assay

Plasma total cholesterol and HDL-cholesterol and triglycerides were analysed by an automated microenzymatic procedure on a Hitachi 737 chemistry analyser as described by Steiner et al.29 at the Medical Research Laboratories, Cincinnati, Ohio, USA. The laboratory maintained CDC-NHLBI Part 3 Standardization31 for all three lipid parameters. HDL was isolated using the modified heparin-2M MnCl₂ procedure32. LDL-cholesterol was calculated by the Friedewald equation33.

Plasma apolipoprotein assay

The apolipoproteins (apo) AⅠ, AⅡ, B and E were analysed using competitive enzyme-linked immunosorbent assay (ELISA) procedures utilizing a monoclonal antibody against each apolipoprotein34–36. Apo Lp(a) was also determined by competitive ELISA using a monospecific rabbit antisemum to Lp(a)37.

Plasma lipoprotein particle assay

Lipoprotein particles consisting of apo AⅠ only (LpAⅠ) were determined by the differential electroimmunoassay (ELISA) technique38 using a Hydragel LpAⅠ kit (Sebia, Issy-les-Moulineaux, France). Total apo CⅢ was also measured by ELISA39 with a Hydragel LpCⅢ kit (Sebia, Issy-les-Moulineaux, France). The amount of plasma apo CⅢ not associated with apo B containing apoproteins (LpCⅢ:NonB) was measured by the same ELISA for total LpCⅢ after the precipitation of apo B containing lipoproteins with a specific apo B antisemum. LpCⅢ:B was calculated as the difference between total LpCⅢ and CⅢ:NonB.

Internal quality assurance was monitored throughout the study using frozen pools at a minimum of two levels for each apolipoprotein. External quality assurance was assessed by the laboratory’s participation in the CDC-IUIS apolipoprotein surveys for AⅠ, B and Lp(a)40,41.

Statistical analysis

All the data are expressed as mean(s.d.). The data of the athletes and controls were compared by employing a two-tailed independent t test.

Results

As shown in Table 2, the mean plasma total cholesterol (P < 0.05), LDL-cholesterol, apo AⅠ and E were significantly lower (P < 0.01) in the athletes than in the controls. The means of plasma CⅢ (P < 0.05) and CⅢ:B (P < 0.01) were significantly higher in the athletes than the controls, while the mean values of plasma triglycerides, HDL-cholesterol, apo AⅠ, B, Lp(a), LpAⅠ and CⅢ:NonB in the athletes were not significantly different (P > 0.05) from those of the controls.

Furthermore, the means of TC:HDL, LDL-cholesterol, and apo B:AⅠ, respectively, were also lower than those of the controls. However, the differences were not statistically significant (P > 0.05).

Table 2. Fasting plasma lipid, lipoprotein and apolipoprotein levels in male athletes and controls

<table>
<thead>
<tr>
<th></th>
<th>Athletes</th>
<th>Controls</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipids and lipoproteins (mg dl⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>107(20.3)</td>
<td>129(24.1)</td>
<td><0.05</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>66(3.7)</td>
<td>58(24.1)</td>
<td>n.s.*</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>44(13.7)</td>
<td>45(11.0)</td>
<td>n.s.</td>
</tr>
<tr>
<td>VLDL-cholesterol</td>
<td>13(2.7)</td>
<td>12(4.8)</td>
<td>n.s.</td>
</tr>
<tr>
<td>LDL-cholesterol</td>
<td>49(20.0)</td>
<td>73(22.0)</td>
<td><0.01</td>
</tr>
<tr>
<td>Apolipoproteins (mg dl⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>149(44.1)</td>
<td>130(23.4)</td>
<td>n.s.</td>
</tr>
<tr>
<td>AⅡ</td>
<td>20(6.5)</td>
<td>30(9.8)</td>
<td><0.01</td>
</tr>
<tr>
<td>B</td>
<td>69(12.8)</td>
<td>70(13.4)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Lp(a)</td>
<td>12(6.7)</td>
<td>15(10.0)</td>
<td>n.s.</td>
</tr>
<tr>
<td>E</td>
<td>2(1.3)</td>
<td>5(2.1)</td>
<td><0.01</td>
</tr>
<tr>
<td>LpAⅠ</td>
<td>43(11.0)</td>
<td>38(5.9)</td>
<td>n.s.</td>
</tr>
<tr>
<td>CⅢ</td>
<td>20(5.9)</td>
<td>16(3.9)</td>
<td><0.05</td>
</tr>
<tr>
<td>CⅢ:B</td>
<td>11(5.6)</td>
<td>6(2.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>CⅢ:NonB</td>
<td>9(5.6)</td>
<td>10(4.1)</td>
<td>n.s.</td>
</tr>
<tr>
<td>CVD Risk indices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol: HDL-cholesterol</td>
<td>2.61(0.78)</td>
<td>3.05(0.95)</td>
<td>n.s.</td>
</tr>
<tr>
<td>LDL-cholesterol: HDL-cholesterol</td>
<td>1.28(0.70)</td>
<td>1.76(0.78)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Apo B:AⅠ</td>
<td>0.49(0.15)</td>
<td>0.56(0.15)</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Values are mean(s.d.); *n.s., Not statistically significant (P > 0.05)

Discussion

The roles played by the various lipid, lipoprotein and apolipoprotein fractions in the development of coronary heart disease have been documented in the literature. However, few reports27,28 are available on this subject in black athletes. The present study is, therefore, important. It shows that the levels of antiatherogenic apo AⅠ and LpAⅠ, and the atherogenic lipids total and LDL-cholesterol, apo B and Lp(a) were favourable in the athletes, an indication that physical activity may be associated with favourable changes in the lipid and apolipoprotein profiles of young and healthy Nigerian athletes. This observation is similar to an earlier finding in male untrained Nigerian university students29 and some other reports on Caucasians8,12–14,20.

In people engaged in training programmes, both acute responses and chronic adaptation may contribute to the respective lipoprotein profiles32. Physical training has been shown to produce favourable changes in the lipid and lipoprotein profiles12–15: some reports, however, did not show apparent changes, most especially in women16,17,43. This has been attributed to changes in endogenous sex

272 Br J Sp Med 1993; 27(4)
hormones during the exercise training periods and also probably because premenopausal women start with a higher pretraining HDL cholesterol level than men 1–6.

The inverse association between physical activity and CVD incidence appears to relate at least in part to the effect on HDL cholesterol 8, 13, 16, 20, 46. In men, increased physical activity usually results in an increase in HDL level 16, 20, 45, 46. Some researchers, however, found no change in HDL level 47, 48. This may be due to changes in the distribution of HDL subfractions without alteration of total HDL concentration, or to differences in experimental design. In this study, there was also no apparent difference between the mean HDL level in the male athletes when compared with the controls. This observation may be due to the fact that the athletes are mostly involved in anaerobic sports. The LDL-cholesterol fraction was, however, significantly lower (P < 0.01) in the athletes.

The mean total triglycerides in athletes in this study tended to be higher, although non-significantly, than the control value. This may also be due to the reported acute nature of the triglyceride lowering effect of exercise, moreover, the pre-exercise triglyceride level tends to influence its response to exercise 8.

Overall, it is expected that the athletes will be more physically fit than the controls. Using the CVD predictor ratios TC:HDL, LDL cholesterol: HDL-cholesterol, and apo B:AI, the athletes showed a favourable, but statistically insignificant, decreased risk of CVD when compared with the controls. It thus appears that exercise decreases TC:HDL ratios in Nigerians by lowering LDL-cholesterol. In Caucasians, exercise tends to lower TC:HDL ratios by raising HDL-cholesterol 13, 15, 20, 45, 46, as well as lowering LDL-cholesterol 9, 12, 16.

While a cause and effect conclusion cannot be drawn from our present data, our findings revealed that regular exercise may be associated with desirable lipid, lipoprotein and apolipoprotein profiles in Nigerian athletes. The antiatherogenic apo AI and LpA1 and the atherogenic total and LDL-cholesterol, apo B, Lp(a) were favourably affected. Furthermore, the CVD risk predictor ratios: TC:HDL, LDL cholesterol: HDL-cholesterol, and apo B:AI showed an insignificant decrease in the athletes. Based on our findings, we conclude that increased physical activity level may reduce CVD risk in healthy Nigerians.

Acknowledgements

We are indebted to the Director and Technologists of the Medical Research Laboratories, Cincinnati, Ohio, USA for their technical assistance in the lipid and apolipoprotein assays, and to Donalee Z. Bewley for helping in the preparation of this manuscript. We also gratefully acknowledge the critical review of the manuscript and valuable advice of Dr Joseph A. Balogun.

References

Plasma lipids in Nigerian athletes: O. O. Oyelola and A. Rufai

274 Br J Sp Med 1993; 27(4)

45 Streja D, Mymin D. Moderate exercise and high-density lipoprotein cholesterol. JAMA 1979; 242: 2190–2.

Plasma lipid, lipoprotein and apolipoprotein profiles in Nigerian university athletes and non-athletes.

O O Oyelola and M A Rufai

doi: 10.1136/bjsm.27.4.271

Updated information and services can be found at:
http://bjsm.bmj.com/content/27/4/271

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/