The impact of a repeated bout of eccentric exercise on muscular strength, muscle soreness and creatine kinase

Human Performance Laboratory, *Department of Biostatistics, †Department of Rheumatology and ‡Department of Internal Medicine, East Carolina University, Greenville, USA

The purpose of this study was to determine if there were any beneficial or detrimental effects regarding delayed onset muscle soreness (DOMS), serum creatine kinase (CK), and maximum concentric strength at 80% of 1-RMconcentric if a bout of eccentric exercise was repeated at 48 h after an initial bout. A secondary purpose was to determine whether unaccustomed eccentrics might affect plasma cholesterol (TC). Twenty-six men were randomly assigned to a control (Group 1) or experimental group (Group 2). Both groups performed three sets (12 repetitions per set) of the eccentric phase of a chest press, at 80% of one repetition maximum (1-RMconcentric). Group 2 repeated this exercise 48 h later. DOMS and CK were measured before, and every 24 h for 8 days after; TC was measured before, and every 24 h for 4 days. Maximum strength during the concentric phase of a chest press (1-RMconcentric) was measured before and at 48-h intervals after. A repeated measures analysis of variance revealed a significant time effect (P < 0.05) for DOMS, CK and strength, but no significant difference between groups (P < 0.05). An interesting finding was the significant (P < 0.05) reduction in TC at 24, 48 and 72 h, after exercise in both groups, which we hypothesized was associated with cellular repair. From these results we concluded that when a bout of eccentrics is repeated 48 h after an initial bout, there is no change in the characteristic time-course and/or intensity of DOMS, CK or 1-RMconcentric.

Keywords: Eccentric muscle action, delayed onset muscle soreness, strength, total cholesterol

Delayed onset muscle soreness (DOMS) is a sensation of discomfort or pain that occurs in response to unaccustomed exercise, or in response to large increases in the volume of exercise. It is first felt between 8–24 h after exercise, peaks in intensity between 24 and 72 h and usually disappears by 5 days1–4. DOMS is associated with connective5–8 and contractile6–4 tissue microtrauma, resulting from high tensions generated during the eccentric phase of a movement1. Complete healing does occur, although little is known about this aspect2.

The general recommendation concerning exercise during the period of muscle soreness3 is to 'ignore the sensations and work through the pain'. In addition, anecdotal reports suggest that exercise during this period might hasten dissipation of the soreness. However, there is no scientific evidence to substantiate or refute these claims.

Friden and colleagues3 reported that in the days following eccentrically biased exercise, traumatized muscle fibres are swollen and presumably weaker and more vulnerable to injury. Leadbetter10 suggested that after any sports injury, there is a susceptible period during which there is a greater risk of reinjury. Therefore, exercise during this early stage might be detrimental to recovery either because of reinjury or interference with healing10,11. Therefore, the main objective of this study was to determine whether repeating a bout of eccentrics at 48 h would exacerbate, alleviate or have no effect on DOMS, creatine kinase (CK) and strength.

Increases in serum levels of CK are used as an indirect marker of the microtrauma associated with DOMS3–4. However, there appear to be no markers related to the process of healing. Since cholesterol is a component of cell membrane12, and since blood cholesterol levels are temporarily reduced in response to trauma13, and after surgery14, we were interested in whether there would be a reduction in total cholesterol levels in response to microtrauma induced by eccentric activity. Therefore a second objective of this study was to examine changes in plasma cholesterol levels in response to one and two bouts of eccentric exercise.

Subjects and methods

Twenty-six healthy, untrained men volunteered for this study. None had performed any weight training for at least 3 months before the study. Subjects were screened using a medical history form and were required to complete an informed consent. Subjects were then randomly assigned to Group 1 (performed one bout of eccentric exercise, n = 13) or Group 2 (performed two bouts of eccentric exercise, n = 13). For means and standard errors of physical characteristics for groups 1 and 2, see Table 1. A standard t test
Repeated eccentrics and muscle soreness: L. L. Smith et al.

Table 1. Subject demographics

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n=13)</th>
<th>Group 2 (n=13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>20.6(0.6)</td>
<td>21.6(0.6)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>178.8(1.5)</td>
<td>179.3(2.3)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>77.3(3.6)</td>
<td>79.1(4.2)</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>14.6(1.3)</td>
<td>14.7(1.8)</td>
</tr>
<tr>
<td>(five-site skinfold)</td>
<td>68.4(3.9)</td>
<td>68.0(4.2)</td>
</tr>
</tbody>
</table>

Values are mean(s.e.)

was used to test for group differences. No significant differences (P > 0.05) were found between the groups for any of the demographic variables.

Strength assessments

The Cybex Eagle Chest Press Machine (Cybex, Division of Lumex, Ronkonkoma, New York, USA) was used for all strength assessments. One concentric repetition maximum (1-RM_{concentric}) was determined during a preliminary visit. Subjects warmed up by performing ten repetitions of the concentric phase of a chest press at a standard resistance of 20 kg. A 2-min rest followed the warm-up. The subject then estimated the maximum amount of weight that he could push (concentric action) through a full range of motion. The 1-RM_{concentric} was determined in three to five trials for all subjects; this was considered the baseline for subsequent strength measures.

1-RM_{concentric} was assessed at 48, 96 and 192 h after exercise. At each time the subject was required to perform a warm-up at a load equal to 30% of their 1-RM_{concentric}. After a 2-min rest the resistance was adjusted to the level recorded on the previous visit; if necessary, the resistance was increased or decreased.

Eccentric exercise protocol

Exercise was performed on the Cybex Eagle Chest Press Machine. The eccentric exercise protocol involved performance of the eccentric, lowering phase of the chest press with two safety spotters performing the positive, lifting phase. On the day of the eccentric exercise, subjects warmed up as described in the previous section. Subjects then performed three sets of 12 repetitions of the eccentric phase of a chest press at an intensity equal to 80% of their previously determined 1-RM_{concentric}; there was a 2-min rest period between each set. This number of repetitions and intensity were selected since they represent what is commonly prescribed when an individual initiates a weight-training programme.\(^{15}\)

Group 1 performed one bout of exercise; Group 2 repeated the exercise 48 h after the initial bout. For Group 2, assessments of plasma creatine kinase, strength and muscle soreness were made before subjects performed the second bout of exercise. Subjects were informed of which group they were in, after the 48-h assessments.

Delayed onset muscle soreness (DOMS) ratings

DOMS measurements were made before, and every 24 h following, the bout of eccentric exercise, for 8 days. Subjects were shown a soreness scale with a range of 1–10 (1 = no soreness, 10 = very sore\(^{16,17}\)). They were instructed to palpate muscles of the chest and upper arm and assign a number between 1 and 10 that best represented their overall rating of soreness.

Creatine kinase (CK)

CK was assessed before the initial bout of exercise, and then every 24 h for 8 days. On each occasion, upon arriving in the laboratory, subjects sat quietly for 5 min. Blood was then drawn from an antecubital vein into nontreated vacutainers. The blood (3 ml) was allowed to clot at room temperature for 10 min and centrifuged for 15 min. Serum was separated and frozen at −20°C for subsequent analysis. Total CK was determined spectrophotometrically, in duplicate, at 25°C, using a commercially available kit (Sigma Diagnostics, St. Louis, Missouri, USA).

Total cholesterol (TC)

TC was assessed for 13 subjects in Group 1 and 13 subjects in Group 2. A 10-ml venous blood sample was drawn into Vacutainer serum separator tubes (Becton Dickinson, Rutherford, New Jersey, USA), allowed to sit for 10 min, then centrifuged at 5000 r.p.m. for 15 min. Plasma total cholesterol was analysed using an Abbott Spectrum Chemistry Analyser (Abbott Laboratories, Abbott Park, Illinois, USA).

Statistical analysis

All dependent variables were analysed using a repeated measures analysis of variance factorial design. Where significance was found, the least significant difference (LSD) post-hoc test was used. The level of significance was set at P < 0.05.

Results

Delayed onset muscle soreness (DOMS) ratings

No significant treatment effect (P = 0.548) or significant treatment by time interaction (P = 0.962) was found. A significant time effect was evident (P = 0.0001). The LSD post-hoc test revealed that DOMS ratings were significantly elevated (P < 0.0001) over baseline levels between 24 (mean(s.e.) 4.15(0.24)) and 96 h (mean(s.e.) 1.8(0.24)). Both groups showed an increase followed by a steady decrease with peak soreness occurring at 48 h after exercise (mean(s.e.) 4.7(0.24)). (See Figure 1.)

Creatine kinase (CK)

The statistical analysis revealed no significant treatment effect between Groups 1 and 2 (P = 0.295), or a significant treatment by time interaction (P = 0.074).
However, there was a significant time effect \((P = 0.0001)\). The LSD post-hoc test revealed that CK was significantly elevated over baseline (mean(s.e.) 95.16(9.90) U\(^{-1}\)) at 48 h (mean(s.e.) 1410.01(335.13) U\(^{-1}\)) and 72 h (mean(s.e.) 2361.01(339.71) U\(^{-1}\)) after exercise, at which time CK peaked. CK remained significantly elevated through 144 h (mean(s.e.) 1063.32(335.13) U\(^{-1}\)). At 192 h CK was still somewhat elevated over baseline (mean(s.e.) 348.22 (335.13) U\(^{-1}\)), but this difference was not statistically significant. (See Figure 2.)

Strength (1-RM\(_{\text{conc}}\))

There was no significant treatment effect \((P = 0.509)\) or significant interaction effect \((P = 0.106)\) but there was a significant time effect \((P = 0.0001)\). The greatest reduction in 1-RM\(_{\text{conc}}\) strength compared with baseline values occurred at 48 h after exercise in both groups \((P = 0.0001)\); this represented a 9\% decrease in strength. Strength remained significantly depressed at 96 h after exercise by 5.1\% \((P = 0.003)\) and at 192 h after exercise by 3.4\% \((P = 0.037)\). (See Figure 3.)

Repeated eccentricities and muscle soreness: L. L. Smith et al.

Total cholesterol (TC)

There was no significant group or interaction \((P > 0.05)\) effect for TC, suggesting that the two bouts of exercise did not alter the response when compared with one bout of eccentricities. However, there was a significant time effect \((P = 0.0001)\). The combined group mean(s.e.) values were 171.500(5.822), 161.231(6.015), 158.962(5.485), 156.600(5.922) and 160.269(5.232) mg d\(^{-1}\) before exercise, and at 24, 48, 72 and 96 h after exercise, respectively. The LSD post-hoc test revealed that TC values were significantly lower than baseline values at 24 \((P = 0.005)\), 48\((P = 0.0001)\), 72 \((P = 0.0001)\) and 96 h \((P = 0.0001)\) after exercise. (See Figure 4.)

Discussion

The present study investigated whether a second bout of eccentric muscle action performed 48 h after an initial bout would alter the course of delayed muscle soreness (DOMS), serum creatine kinase (CK) and maximum concentric strength (1-RM\(_{\text{conc}}\)). The

Figure 1. Mean(s.e.) ratings for delayed onset muscle soreness (DOMS) for Group 1 (○) and Group 2 (●), across all time periods

Figure 2. Mean(s.e.) serum creatine kinase (CK) levels for Group 1 (○) and Group 2 (●), across all time periods

Figure 3. Mean(s.e.) of strength measurements (1-RM\(_{\text{conc}}\)) for Group 1 (○) and Group 2 (●), across all time periods

Figure 4. Mean(s.e.) of total cholesterol (TC) for Group 1 (○) and Group 2 (●)
Repeated eccentrics and muscle soreness: L. L. Smith et al.

results revealed no significant differences in the rating of soreness between Group 1 and Group 2, suggesting that an equivalent bout of eccentric performed 48 h later does not increase or prolong DOMS (Figure 1). On the other hand, 17, is similar was interesting it returning the eccentric but it was not the case. However, the fact that DOMS, CK and strength responses were not exacerbated after Group 2 repeated the exercise, suggests that the ‘protective effect’ might be present as early as 48 h after the initial eccentric bout.

An interesting finding of this study was the significant decrease in TC seen for both groups at 24, 48 and 72 h after exercise (Figure 4). Increased levels of blood cholesterol have been linked to a substantial increase in risk for coronary artery disease (CAD). Although cardiovascular exercise might have some beneficial lowering effects on blood lipids, there is little conclusive evidence about the relationship between muscular strengthening exercise and lipid levels24. To the best of our knowledge no strength training studies have investigated acute changes in TC in response to the eccentric component of weight training. In view of the fact that cholesterol may constitute 13% of a cell membrane25, and that signs of healing have been observed in human subjects as early as 36 h after eccentric exercise26, we suggest that the acute decrease in TC in the present study represents the diversion of cholesterol for synthesis of new cell membranes. An alternative or supplementary explanation for the acute reduction in TC could be related to exudative changes which involve the loss of plasma proteins26, since swelling, and presumably an increase in exudate, has been reported in association with DOMS9.

In conclusion, the results of this study suggest that repeating a bout of exercise during the time of DOMS will not influence the time course of DOMS, serum CK, or strength decrements. Whether or not it might be beneficial or detrimental in terms of other variables, such as factors related to the healing process13,14, is presently not known.

References

Repeated eccentrics and muscle soreness: L. L. Smith et al.

Announcement

Relocation of Journal Publishing Office

As from 1st October 1994, the publishing, editorial, production and reprint offices are moving to:

Elsevier Science Ltd
The Boulevard, Langford Lane,
Kidlington, Oxford, OX5 1GB, UK

Main switchboard:
Tel: +44 (0)1865 843000
Fax: +44 (0)1865 843010

All correspondence and queries relating to the journal should be sent to this address

Newly submitted manuscripts should be mailed to the Editor
The impact of a repeated bout of eccentric exercise on muscular strength, muscle soreness and creatine kinase.

L L Smith, M G Fulmer, D Holbert, M R McCammon, J A Houmard, D D Frazer, E Nsien and R G Israel

doi: 10.1136/bjsm.28.4.267

Updated information and services can be found at: http://bjsm.bmj.com/content/28/4/267

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/