The biochemistry of runners in a 1600 km ultramarathon

K E Fallon, G Sivyer, K Sivyer, A Dare

Abstract

Objective—To investigate biochemical changes related to muscle breakdown, hepatic damage, hyponatraemia, and a number of other variables in the serum of participants in a 1600 km ultramarathon run.

Methods—Blood samples were obtained from nine participants (seven men, two women) in a 1600 km foot race before, after 4 and 11 days of running, and at the conclusion of the event. Samples were analysed by standard methods and results corrected, where appropriate, for changes in plasma volume.

Results—Significant (p<0.05) increases in the following variables were found during or at the conclusion of the event: plasma volume, sodium, chloride, urea, alkaline phosphatase, γ-glutamyltransferase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, creatine kinase, bilirubin, total protein, albumin, glucose, calcium, and phosphate. Significant (p<0.05) decreases in the following variables were found during or at the conclusion of the event: globulin, uric acid, and cholesterol. No change occurred in serum potassium, bicarbonate, creatinine, and triglycerides.

Conclusion—A wide range of biochemical perturbations occur during ultramarathon running but a number of variables remain within normal limits despite severe physical stress. Large increases in plasma volume occur, and hyponatraemia is rare in events of this duration. The time course of increases in enzymic indicators of muscle damage indicates that duration of running is not the sole determinant of such increases. This study provides indirect evidence of possible hepatic damage during prolonged exercise and an increase in serum calcium both of which warrant further investigation.

Keywords: ultramarathon; biochemistry; muscle; liver; acute phase response

A significant amount of biochemical data has accumulated during studies of marathons and ultramarathons but little information is available on very long distance running events. In view of the unusual distance of this event, this study was conducted to document a wide range of biochemical changes and in particular to attempt to clarify a series of issues related to ultraendurance sport, specifically the incidence of hyponatraemia, the time course of changes in indicators of skeletal muscle breakdown, and possible hepatic damage.

Hyponatraemia is a significant medical problem in ultraendurance events, being reported in 20% of finishers in the Hawaiian Iron Man triathlon. Concentrations of sodium have been found to be significantly elevated after a 100 km run, but no change was found after a 160 km run or after 10 days of a 20 km stage race. It has been hypothesised that hyponatraemia would not occur in an ultramarathon of this duration because of significant intake of solid food and utilisation of glucose-electrolyte drinks.

Few studies on the effect of repeated daily training or running on creatine kinase (CK) are available, but in army personnel undergoing a 24 day intensive training course, CK was higher in the early than in the later part of the programme, and Dressendorfer and Wade found a continuing increase in CK over the first eight days of a 500 km run. Noakes has suggested that the increase in muscle enzymes, particularly CK, is related to both intensity and duration of exercise, with duration having the dominant effect such that the largest increases are found after very prolonged exercise but that each athlete possibly shows a maximum increase in serum enzyme activity which may be achieved by running for four to six hours. The second postulate of this study was therefore that enzymic indicators of muscle damage would have their highest levels early in the event and that duration of exercise would not be the primary determinant of enzyme increases.

It is not known if hepatic damage occurs during prolonged exercise. However, whereas lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) are found in both liver and muscle cells and therefore increases in these enzymes cannot specifically indicate liver cell damage, Nagel et al have suggested that a decrease in CK and AST after the third day of running that is not accompanied by a decrease in ALT may indicate reduction of skeletal muscle damage with continuing hepatic cell injury. The third hypothesis was therefore that changes in these enzymes would be similar in this event to those in the study of Nagel et al and that this would support a further study in which liver-specific enzymes would be measured.

Methods

Before commencement of this study, approval was obtained from the ethics committee of the South Queensland Regional Health Authority.
Table 1 Subject characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>53</td>
<td>11.2</td>
<td>41-76</td>
</tr>
<tr>
<td>Training distance (km/week)</td>
<td>194</td>
<td>212</td>
<td>50-650</td>
</tr>
<tr>
<td>Years of running</td>
<td>20</td>
<td>12</td>
<td>6-40</td>
</tr>
<tr>
<td>Previous ultramarathons</td>
<td>34</td>
<td>34</td>
<td>6-100</td>
</tr>
<tr>
<td>Previous marathons</td>
<td>19</td>
<td>17</td>
<td>1-50</td>
</tr>
<tr>
<td>Best marathon time (hours)</td>
<td>3.26</td>
<td>0.55</td>
<td>2.5-4.3</td>
</tr>
</tbody>
</table>

Values are mean (SD).

Table 2 Performance data for each of the runners

<table>
<thead>
<tr>
<th>Runner</th>
<th>Time (days)</th>
<th>Distance (km)</th>
<th>Rate (km/day)</th>
<th>Day 4 (km)</th>
<th>Day 11 (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11.45</td>
<td>1600</td>
<td>118.8</td>
<td>490.2</td>
<td>1306.5</td>
</tr>
<tr>
<td>B</td>
<td>11.79</td>
<td>1600</td>
<td>115.7</td>
<td>520.8</td>
<td>1317.8</td>
</tr>
<tr>
<td>C</td>
<td>14.44</td>
<td>1600</td>
<td>110.8</td>
<td>520.4</td>
<td>1249.4</td>
</tr>
<tr>
<td>D</td>
<td>14.95</td>
<td>1600</td>
<td>107.8</td>
<td>499.7</td>
<td>1231.7</td>
</tr>
<tr>
<td>E</td>
<td>11.49</td>
<td>1364</td>
<td>118.7</td>
<td>454.5</td>
<td>1308.9</td>
</tr>
<tr>
<td>F</td>
<td>16</td>
<td>1346</td>
<td>85.5</td>
<td>409.3</td>
<td>1019.5</td>
</tr>
<tr>
<td>G</td>
<td>16</td>
<td>1346</td>
<td>71.6</td>
<td>297</td>
<td>785.3</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>1138</td>
<td>71.1</td>
<td>327</td>
<td>802.6</td>
</tr>
<tr>
<td>I</td>
<td>14.89</td>
<td>1044</td>
<td>70.1</td>
<td>329.6</td>
<td>782.9</td>
</tr>
<tr>
<td>Mean</td>
<td>14.11</td>
<td>1382</td>
<td>96.7</td>
<td>437.6</td>
<td>1089.4</td>
</tr>
<tr>
<td>SD</td>
<td>1.98</td>
<td>229</td>
<td>21.7</td>
<td>97.7</td>
<td>241.6</td>
</tr>
</tbody>
</table>

All procedures conformed to the National Health and Medical Research Council guidelines for experimentation with human subjects and all subjects gave their informed written consent before participation.

Seven male and two female experienced ultramarathon runners participating in the 1600 km ultramarathon in Nanango, Australia volunteered for this study. The data for those who completed at least 1000 km were included in the analysis. The ultramarathon was a continuous event, the object being to cover 1600 km (1000 miles) in the shortest possible time. Runners competed on a 400 m oval grass track, the surface of which changed progressively to dirt after the first three days of the event. Temperature range during the 16 days of the event was 11.0–31.8° C, and the relative humidity 17–100%. The runners were allowed humidity 17–100%. The runners were allowed

Results

Table 1 presents a summary of the characteristics of the subjects of this study.

Table 2 gives the performance data for each of the runners. Four of them completed 1600 km, three completed shorter distances in the 16 day period of the event, and one completed over 1000 km in almost 15 days of running.

Table 3 gives means (SD) for electrolytes, indicators of renal function, and changes in plasma volume. Serum sodium remained within normal limits throughout the event, except for one runner in whom it reached a level of 130 mmol/l on day 11. No significant changes occurred in serum potassium, and all individual values remained within normal limits. Serum chloride significantly increased only at the end of the event. No significant changes occurred in serum bicarbonate or serum creatinine, and all individual values for chloride, bicarbonate, and creatinine concentration remained within normal limits. Urea was significantly increased at 4 and 11 days and at the end of the run.

Table 4 gives the means (SD) for serum enzymes. AP activity was significantly elevated above baseline at day 4 and 11 and at the end of the run. GGT was increased on day 4 and at the conclusion of the run. All mean values for AP and GGT remained within normal limits. ALT was significantly increased at day 4 and was not significantly different to the day 4 level on day 11 and at the end of the run. AST levels were significantly elevated at day 4 and decreased significantly from this value on day 11; however, both the day 11 value and that at the end of the run remained significantly increased compared with the level before the race. LDH was significantly increased at day 4 and was not different to the day 4 level on day 11 and at the end of the run. CK had increased significantly by day 4, decreased between days 4 and 11 and between day 11 and the end of the race, but the value at the end of the race remained above that measured before the race being seated. All specimens were refrigerated and transported to the laboratory within six hours of venepuncture.

Estimation of electrolytes, urea, creatinine, glucose, urate, total bilirubin, alkaline phosphatase (AP), ALT, AST, γ-glutamyltransferase (GGT), LDH, calcium, phosphate, total protein, albumin, cholesterol, triglycerides, and CK was performed on an Olympus AU 800 autoanalyser using trace reagents. Haptoglobin was measured on an Hitachi 917 analyser using Boehringer Mannheim reagents. Haemoglobin and packed cell volume were measured on a Coulter Stacker “S” autoanalyser. Plasma volume changes were derived from changes in haemoglobin and packed cell volume. All results were corrected for changes in plasma volume unless specifically indicated.

Statistical significance of paired differences in means and standard deviations of the metabolic alterations from baseline values were calculated by Student’s t test. The level of significance was set at p<0.05.

Table 3 Concentrations of electrolytes and indicators of renal function and changes in plasma volume during the ultramarathon race

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before the race</th>
<th>Day 4</th>
<th>Day 11</th>
<th>After the race</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (mmol/l)</td>
<td>138 (2)</td>
<td>141 (4)*</td>
<td>137 (3)</td>
<td>141 (2)*</td>
</tr>
<tr>
<td>Potassium (mmol/l)</td>
<td>4.4 (0.5)</td>
<td>4.4 (0.3)</td>
<td>4.4 (0.3)</td>
<td>4.4 (0.5)</td>
</tr>
<tr>
<td>Chloride (mmol/l)</td>
<td>102 (2)</td>
<td>101 (4)</td>
<td>99 (4)</td>
<td>105 (2)*</td>
</tr>
<tr>
<td>Bicarbonate (mmol/l)</td>
<td>28 (2)</td>
<td>27 (2)</td>
<td>28 (1)</td>
<td>29 (2)</td>
</tr>
<tr>
<td>Urea (mmol/l)</td>
<td>5.7 (1.1)</td>
<td>9.3 (2.0)*</td>
<td>8.6 (2.0)*</td>
<td>8.8 (1.5)*</td>
</tr>
<tr>
<td>Creatinine (μmol/l)</td>
<td>0.09 (0.01)</td>
<td>0.09 (0.01)</td>
<td>0.09 (0.01)</td>
<td>0.09 (0.01)</td>
</tr>
</tbody>
</table>

Plasma volume (% change) 13.4 (4.3)* 21.6 (19.2)* 12.6 (9.8)*

Values are mean (SD).

*p<0.05 v pre-race value.
Table 4 Serum enzyme activity during the ultramarathon race

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Before the race</th>
<th>Day 4</th>
<th>Day 11</th>
<th>After the race</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>62 (16)</td>
<td>85 (22)*</td>
<td>88 (25)*</td>
<td>91 (21)*</td>
</tr>
<tr>
<td>GGT</td>
<td>22 (8)</td>
<td>24 (8)*</td>
<td>26 (8)</td>
<td>35 (14)*</td>
</tr>
<tr>
<td>ALT</td>
<td>25 (9)</td>
<td>107 (63)*</td>
<td>100 (59)*</td>
<td>87 (41)*</td>
</tr>
<tr>
<td>AST</td>
<td>24 (5)</td>
<td>107 (61)*</td>
<td>63 (22)*</td>
<td>91 (21)*</td>
</tr>
<tr>
<td>LDH</td>
<td>161 (17)</td>
<td>465 (161)*</td>
<td>482 (212)*</td>
<td>430 (161)*</td>
</tr>
<tr>
<td>CK</td>
<td>123 (64)</td>
<td>2656 (2130)*</td>
<td>1565 (1105)*</td>
<td>567 (297)*†</td>
</tr>
</tbody>
</table>

Values are mean (SD).

Results are expressed as U/l and are mean (SD).

Table 5 Other biochemical variables measured throughout the ultramarathon race

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before the race</th>
<th>Day 4</th>
<th>Day 11</th>
<th>After the race</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilirubin (µmol/l)</td>
<td>13 (7)</td>
<td>22 (17)*</td>
<td>10 (5)</td>
<td>10 (3)</td>
</tr>
<tr>
<td>Haptoglobin (mg/dl)</td>
<td>181 (73)</td>
<td>341 (89)*</td>
<td>390 (64)*</td>
<td>412 (119)*</td>
</tr>
<tr>
<td>Total protein (g/l)</td>
<td>75 (5)</td>
<td>79 (6)*</td>
<td>75 (8)</td>
<td>77 (8)</td>
</tr>
<tr>
<td>Albumin (g/l)</td>
<td>41 (3)</td>
<td>48 (4)*</td>
<td>43 (3)</td>
<td>46 (5)*</td>
</tr>
<tr>
<td>Globulin (g/l)</td>
<td>34 (4)</td>
<td>31 (3)*</td>
<td>31 (3)*</td>
<td>32 (4)</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>5.4 (0.9)</td>
<td>6.5 (1.3)</td>
<td>6.6 (0.9)*</td>
<td>5.8 (0.4)</td>
</tr>
<tr>
<td>Uric acid (mmol/l)</td>
<td>0.28 (0.07)</td>
<td>0.26 (0.12)</td>
<td>0.23 (0.11)*</td>
<td>0.28 (0.14)</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.1 (0.4)</td>
<td>4.9 (0.5)*</td>
<td>4.7 (0.7)</td>
<td>5.0 (0.4)</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.9 (0.9)</td>
<td>0.9 (0.4)</td>
<td>1.7 (0.7)</td>
<td>1.7 (0.4)</td>
</tr>
<tr>
<td>Calcium (mmol/l)</td>
<td>2.38 (0.06)</td>
<td>2.70 (0.11)*</td>
<td>2.66 (0.24)*</td>
<td>2.62 (0.21)*</td>
</tr>
<tr>
<td>Phosphate (mmol/l)</td>
<td>1.1 (0.1)</td>
<td>1.3 (0.2)*</td>
<td>1.3 (0.2)*</td>
<td>1.3 (0.2)*</td>
</tr>
</tbody>
</table>

Values are mean (SD).

Discussion

Caution needs to be exercised in the interpretation of the end of race data in this study as they represent a number of end points which include completion of 1600 km, 16 days of running, and early retirement. However, it should be noted that each of four runners completed 1600 km, three of the others finished on the 16th day, and the runner who finished on day 12 had completed 1364 km.

Electrolytes and measures of renal function

In an attempt to identify hyponatraemia and other electrolyte abnormalities, serum electrolytes were not corrected for changes in plasma volume. Serum sodium remained within normal limits throughout the event except for in one runner in whom a level of 130 mmol/l was reached on day 11. The runner was asymptomatic at the time, which is consistent with other cases of exercise related hyponatraemia, symptoms generally not occurring until serum sodium concentration falls below 125 mmol/l.

Serum sodium was increased above the baseline value on both day 4 and at the conclusion of the event but was not significantly different from the baseline level on day 11. This finding is consistent with other studies of ultramarathon runners.3-5

The cause of hyponatraemia in athletes remains controversial, but several mechanisms have been postulated. The first is that a significant total body sodium loss occurs as the result of prolonged increased sweating,12 the second that hypervolaemic hyponatraemia occurs because of the consumption of large volumes of hypotonic solutions,11 and the third that sodium may be translocated into a third space which may be the gastrointestinal tract.11 As no large volume changes were noted during or at the conclusion of the event, indicating that significant dehydration and overhydration were unlikely to have occurred, it is understandable that serum sodium concentrations did not change. Each of the runners was also noted to use carbohydrate-electrolyte drinks as their predominant fluid replacement, which is at variance with the finding of a recent study of runners in a 100 km event.16 This and the use of solid food may have assisted in maintenance of adequate sodium intake. In future studies assessment of urinary electrolytes and osmolality in addition to hormones related to fluid homeostasis may assist in clarification of the mechanisms involved in maintenance of normal serum sodium.

As in this study, serum potassium has previously been found to be unchanged after a standard marathon,3 a 56 km run,16 and long course triathlons.7 No significant changes occurred in serum creatinine, and all individual values remained within normal limits. A significant (60%) increase in creatinine after a 100 km run has been described,1 and increases have been documented after a 160 km run and a 24 hour event.13 Reduced renal blood flow, reduced glomerular filtration rate, and hypervolaemia have been postulated to lead to increases in creatinine in these shorter events. In the 1600 km race, the work rate is considerably lower than in these shorter events and therefore these renal changes are unlikely. The opportunity to maintain hydration is also enhanced and significant dehydration is rare.

Urea was significantly increased above baseline values at 4 and 11 days and at the end of the run, and this is similar to an increase documented after runs of 56 km,11 100 km,16 160 km,1 and 24 hours,18 and after a 400 km staged road race over 15 days.15 Such increases are suggestive of a catabolic state, not unexpected when increases in muscle enzymes, indicative of muscle damage, are considered. It is unlikely that this increase indicates a decrease in renal function, as suggested by Rama et al.,16 as serum creatinine remained unchanged.

Liver function tests and indicators of muscle cell damage

Changes in serum enzyme concentrations are consistent with those previously reported for ultramarathon events. An elevation of GGT activity, which remained within the normal reference range, has been previously reported after a 100 km run,3 and both AST and ALT
Biochemical variables in ultramarathon runners

267

were found to be increased after a 67 km run.20

Increases in serum LDH have been described
after marathons15 and ultramarathons,21 and
both AST and LDH were increased after a long
course triathlon17 and 100 mile foot races.12 12
AP has also been shown to be increased after a
160 km run.4

In a study of runners who completed 1000
km in 20 days, Nagel et al showed a continuous
increase in AP from day 1 to day 19, a rise in
AST on day 3 followed by a gradual fall, a rise in
ALT to a maximum on day 6 which was then
maintained, and no change in GGT and LDH.
The results from this study are similar for AP,
ALT, and AST but the increase in GGT at the
end of the race and significant increases in
LDH during and after the race are different. It
was, however, noted in the 1000 km run study
that large short term increases occurred in both
these enzymes from day to day in more than
half the runners. The discrepancy may be
explained by the greater distance in this study
and subsequent increase in muscle damage and
the manner in which the distance was covered
in the 1000 km run. In that event the average
daily distance was 50 km, which would have
allowed long rest periods, whereas in the
present study the 1600 km was covered in a
semicontinuous fashion in as short a time as
possible and the mean daily distance was 95
km.

LDH, ALT, and AST are found in both liver
and muscle cells and therefore increases in
these enzymes cannot specifically indicate liver
cell damage. LDH may also be increased in
cases of haemolysis, and this is explored in
the section in which bilirubin and haptoglobin are
discussed. Nagel et al,9 however, suggest that a
decrease in CK and AST after the third day of
running, which is not accompanied by a
decrease in ALT, may indicate reduction in
skeletal muscle damage with continuing he-
patic cell injury. In this study, CK and AST
decreased progressively after day 4 and ALT
remained increased. This finding parallels that
of Nagel et al and may indicate liver injury.
More specific to the liver is GGT, and,
indication to continued exercise, and most studies
increases. Increased clearance may be an adap-
tation of a more shu

BILIRUBIN AND HAPTOGLOBIN

Bilirubin had increased from the initial value
on day 4, when it was above the normal range.
After a 160, km run a significant increase in
bilirubin was found, which, when broken down
into direct and indirect types, suggested intra-
vascular haemolysis.4 Although no change was
found after a 1000 km 20 day run, a significant
increase was seen on day 3, a similar pattern to
that of the present study.7 Although only total
bilirubin has been measured in these studies, if
taken in conjunction with low haptoglobin lev-
els on day 3 of the 1000 km run, it is possible
that this indicates maximum haemolysis during
the early stage of the event. This is consistent with the hypothesis that footstrike is the causative factor of haemolysis, as runners in ultramarathons typically adopt a shuffling gait as the event progresses and this is likely to be accompanied by a lower force of footstrike and therefore potentially less damage to red blood cells. Another possible explanation for maximum haemolysis in the early stage of the event is that, as older red cells are more fragile, those most vulnerable may be damaged early, and once these are removed from the circulation a steady state is reached. In this study a significant increase in haptoglobin had occurred by day 4, most likely as part of an acute phase response, and therefore measurement of this variable was not useful as an indicator of haemolysis.

OTHER BIOCHEMICAL PARAMETERS
As previously described, plasma volume was increased by 13.4% on day 4, 16.6% on day 11, and 12.6% at the end of the run. Serum albumin was significantly above the pre-race level on day 4 and at the end of the race but not different on day 11. All mean values remained within normal limits. No change was found after a 56 km run,26 but increases in serum albumin have been described after marathon running17 and 100 km28 and 160 km1 runs. This response is unusual in that albumin is said to be a negative acute phase reactant and a decrease may have been expected. Total protein increased significantly by day 4, but was not different to baseline values on day 11 and at the conclusion of the event. In an 1100 km event run over 20 days, total protein levels were unchanged at day 4 but were significantly lower by the end of the run.27 Plasma proteins are thought to play an important role in maintaining plasma volume during exercise.28 Increases in plasma volume in this study are consistent with maintenance of intravascular albumin and total protein during the race. Calculations based on the method of Rocker et al28 indicate that a net influx of proteins into the intravascular space occurred during the event and that this had increased considerably after the run. Serum globulin decreased on days 4 and 11.

On day 11, serum uric acid concentration was significantly lower than before the race, and a significant increase occurred between day 11 and the end of the run, the final value being not significantly different from the pre-race level. No change in uric acid was seen after a 56 km run,18 but Noakes and Carter1 found a significant increase after a 160 km run. It is not surprising to find no change in serum uric acid after exercise performed at the intensity of a 1600 km run. Exercise intensity is a critical factor in increases in serum uric acid concentration,29 the rise in which during exercise is thought to be related to degradation of purine nucleotides.

Serum calcium was significantly higher than the baseline value on days 4 and 11 and at the end of the run. Serum phosphate was significantly higher than the pre-race value on days 4 and 11 and at the end of the run. The effect of endurance exercise on serum calcium has rarely been investigated, but a significant increase has been found after a long course triathlon3 and no change after a 160 km run.4 The mechanism and significance of this increase may be elucidated by future measurement of parathyroid hormone and urinary levels of calcium and phosphate. A significant increase in phosphate has been documented after a 160 km run,4 but the reason for this increase is not known.

CONCLUSION
This study has documented a range of biochemical variables during a continuous 1600 km foot race. There appear to be a number of differences in biochemical responses between staged and continuous races over similar long distances. These may be related to the population studied, the total distance covered, intensity of exercise, rest periods, differences in the acute phase response to musculoskeletal tissue damage, or failure to consider the effects of plasma volume changes. The three hypotheses proposed have been supported by the findings of this study. Hypoanaemia was not a consistent finding, and, although other factors may be important, it is likely that intake of solid food, utilisation of glucose-electrolyte drinks, and avoidance of large weight increases are protective factors. The time course of plasma indicators of muscle damage has been clarified, and the postulate that enzymic indicators of muscle damage would peak early in the event and that duration of exercise would not be the primary determinant of such increases has been supported. Indirect evidence for possible hepatic damage has been provided but definitive evidence for such damage will only be found by studying liver-specific enzymes. The significance of a number of the findings such as increases in serum calcium and phosphate is currently not known and warrants further investigation.

A D is a pathologist who arranged for analysis of the blood samples. K S is a registered nurse who collected the blood samples. G S is general practitioner who arranged for participation of the subjects, assisted in blood collection, and liaised with the organisers of the ultramarathon. K F is associate professor of sports medicine at the AIS who was responsible for the design, methodology, data analysis, and production of this paper.

Take home message

“Within normal limits” is a medical term which brings reassurance to patients and doctors alike. To avoid fruitless investigation and unnecessary concern, the normal biochemical changes associated with ultramarathon running should be known to those involved in coverage of these events.
The biochemistry of runners in a 1600 km ultramarathon.

K E Fallon, G Sivyer, K Sivyer and A Dare

doi: 10.1136/bjsm.33.4.264

Updated information and services can be found at:
http://bjsm.bmj.com/content/33/4/264

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/