Comparison of three different sit and reach tests for measurement of hamstring flexibility in female university students

G Baltaci, N Un, V Tunay, A Besler, S Gerçeker

Background: The sit and reach test is the most common flexibility test used in health related fitness test batteries. Objective: To examine and compare three different sit and reach tests as a measure of hamstring flexibility in 102 female students.

Method: The traditional sit and reach test, the chair sit and reach test, the back saver sit and reach test, and passive straight leg raise were administered in three trials to all 102 students (mean (SD) age 22 (1) years) on the same day.

Results: A Pearson correlation coefficient analysis was significant (p<0.01) for the traditional sit and reach test and back saver sit and reach test with back saver sit and reach test and flexibility of hamstrings (r = 0.45 and 0.65 for left and right legs, and 0.63 and 0.53 for left and right legs respectively). Also, the back saver sit and reach test for the left leg (p<0.01) and right (p<0.05) leg was significantly associated with hamstring flexibility (r = 0.37 and 0.25 for the left leg and 0.50 and 0.44 for the right leg respectively).

Conclusion: The results indicate that the back saver sit and reach test produces reasonably accurate and stable measures of hamstring flexibility. Moreover, it appears that this test is a safe and acceptable alternative to the traditional and chair sit and reach tests as a measure of hamstring flexibility in young women.

The twofold purpose of this study was to (a) compare the three SR tests, and (b) evaluate their use as a criterion (goniometer) measure of hamstring flexibility.

MATERIALS AND METHODS

Participants
A total of 102 female university students (age range 20–24 years) volunteered to participate. The criteria for inclusion were no musculoskeletal limitations and low back pain that would limit their performance in these tests, and that they agreed to sign a statement of informed consent.

Procedure
Testing took place in the exercise room at the School of Physiotherapy and Rehabilitation, Hacettepe University. Before testing, all participants performed a three minute warm up and static stretch routine, emphasising the lower body. Immediately after the stretching, the flexibility tests were performed in a counterbalanced design. All tests were assessed on the same day for each student. The participants were allowed to rest for 20 minutes between tests. One physiotherapist was responsible for each test.

The four physiotherapists were unaware of scores received on the CSR test, SR test, BSSR test, and goniometric measurement of hamstring flexibility.

Both the right and left leg scores were used for the CSR, BSSR, and measurement of flexibility. After a demonstration of each test, one practice trial and three test trials were performed for each of the measures. Participants were reminded to exhale as they were bending forward, to avoid bouncing or rapid forceful movement, and never to stretch to

Abbreviations: SR, sit and reach; CSR, chair sit and reach; BSSR, back saver sit and reach
the ACSM manual. The SR test was performed using the procedures outlined in the ACSM manual. The procedures for the BSSR test were similar to those described in the Prudential FITNESSGRAM test manual (Cooper Institute for Aerobics Research). The test was administered using a Lafayette Flexibility tester (SR box). The participant sat at the SR box and fully extended one leg so that the sole of the foot was flat on the floor and 7–10 cm to the side of the straight knee. With the extended leg as straight as possible, hands on top of each other (tips of the middle fingers even), and palms down, the participant slowly reached forward sliding the hands along the box scale as far as possible. The physiotherapist (AB) recorded the average of the three trials on each leg.

Goniometric measurement

The goniometric measurement of hamstring flexibility was administered by one experienced physiotherapist (VT) after the other three tests had been completed. Following procedures outlined by the American Academy of Orthopaedic Surgeons and Kendall et al., she used a goniometer to measure hamstring flexibility during a passive straight leg raise. This test was selected because of its prevalent acceptance as a criterion measure for hamstring flexibility and its high reliability (0.95<0.99). The axis of the goniometer was aligned with the axis of the hip joint. The tester positioned the stationary arm in line with the trunk and placed the moveable arm in line with the femur. With the knee held straight, the participant’s leg was moved passively into hip flexion until tightness was felt. At that point, the physiotherapist (VT) read the goniometer in degrees of motion. Three trials were performed on each leg, and the average was used for analysis. Scores were recorded to the nearest degree for both legs.

Table 1 Flexibility scores for participants

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair sit and reach (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>-8.3</td>
<td>9.9</td>
</tr>
<tr>
<td>Left</td>
<td>-8.2</td>
<td>9.9</td>
</tr>
<tr>
<td>Sit and reach (cm)</td>
<td>6.9</td>
<td>7.8</td>
</tr>
<tr>
<td>Back saver (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>-6.2</td>
<td>5.4</td>
</tr>
<tr>
<td>Left</td>
<td>-5.7</td>
<td>5.3</td>
</tr>
<tr>
<td>Goniometer (°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>76.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Left</td>
<td>75.3</td>
<td>9.8</td>
</tr>
</tbody>
</table>

The 102 female students had a mean (SD) age of 22 (1.46) years, height of 168.3 (8.9) cm, and weight of 59.7 (11) kg. Table 1 gives their flexibility characteristics.

Correlation coefficients were calculated for the three different SR tests to provide reliability estimates (table 2). The correlation between the hamstring flexibility values for the right and left legs were calculated using a Pearson correlation coefficient analysis. Ninety five percent confidence intervals were computed for all correlation coefficients. Statistical Package for Social Sciences (SPSS) MS Windows Release 8.0 (SPSS Inc) was used for the statistical analysis.

RESULTS

The correlation matrix of all five flexibility tests is given in Table 1. The data was analyzed by using the data analysis module of SPSS. The correlation between the CSR, SR, and BSSR tests and the criterion goniometric measurement was calculated. The table gives the correlation coefficients for the different tests.

Table 2 Intercorrelations of chair sit and reach, sit and reach, and back saver sit and reach tests with goniometric measurement in all participants (n = 102)

<table>
<thead>
<tr>
<th></th>
<th>CSRL</th>
<th>CSR</th>
<th>SR</th>
<th>BSSR</th>
<th>BSSRL</th>
<th>GML</th>
<th>GMRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSRL</td>
<td>0.98*</td>
<td>0.22*</td>
<td></td>
<td>-0.03</td>
<td>0.14</td>
<td>0.22*</td>
<td>0.16</td>
</tr>
<tr>
<td>CSR</td>
<td>0.23*</td>
<td>0.17</td>
<td>0.21*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>0.45**</td>
<td>0.65**</td>
<td>0.63**</td>
<td>0.53**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSSR</td>
<td>0.66**</td>
<td>0.37**</td>
<td>0.25*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSSRL</td>
<td></td>
<td>0.50**</td>
<td>0.44**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GML</td>
<td></td>
<td></td>
<td>0.80**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Correlation is significant at the 0.01 level (two tailed).
**Correlation is significant at the 0.05 level (two tailed).
DISCUSSION

Although the CSR, SR, and BSSR tests are the most commonly used field measures of hamstring flexibility in current fitness test batteries, the SR and BSSR tests have inherent limitations for adults with low back problems or who have difficulty sitting on a level surface with legs extended. Therefore, the CSR test was proposed as an alternative for assessing hamstring flexibility in elderly people.

The purpose of this study was to determine the relations between the three SR tests and hamstring flexibility because the test is used as a measure of hamstring flexibility in young females. The test protocols for the criterion measures were taken from a study in which their reliability and validity were demonstrated.

Our analyses indicated that the traditional SR and BSSR tests were highly related to hamstring flexibility. In contrast, the CSR test was not related to hamstring flexibility for either the right or left leg (r = 0.22 and 0.21 respectively). These findings show that both SR and BSSR tests are valid for measuring hamstring flexibility. The CSR test detected individual differences in the flexibility of hamstrings of these female university students.

These results support the findings of Jackson and Baker and Chung and Yuen. However, they concluded that hamstring flexibility can only be measured by the traditional SR test, but we have provided evidence that the BSSR test can be used instead of the traditional SR test in young female subjects. From multiple regression analysis, Jackson and Langford suggested that the combination of flexibility in both hamstrings and lower back contributed to the reported variation in test scores. However, testing subjects of a wide age range, as was done by Jackson and Langford, is questionable. Jackson and Baker and Jackson and Langford reported validity coefficients for the SR test ranging from 0.64 to 0.88 in studies involving teenage and middle aged participants respectively. Also, Patterson et al., in a study involving 11–15 year olds, reported fairly comparable BSSR coefficients for male participants (left leg r = 0.68; right leg r = 0.72), but somewhat lower values for female participants (left leg r = 0.51; right leg r = 0.52). The low CSR reliability values for the young women in this study were not similar to the SR and BSSR values reported in other studies, with r coefficients for left and right leg in all cases consistently being 0.23 and 0.16 respectively. No participants were eliminated because of their inability to perform the CSR test. Also, because of our emphasis on careful checking of the participants in this study, none fell backwards during the test or were in an incorrect position. No injuries occurred during CSR testing. Careful monitoring is recommended when assessing frail participants or those with balance problems.

Although the SR tests do not satisfactorily measure lower back flexibility and are only moderately valid measures of hamstring flexibility, they are still the only field tests that are practical and easy to administer. Moreover, Jackson et al. reported that the SR test was not related to reported lower back pain in either a cross sectional or prospective sample of adults. Evidence of the relation between hamstring flexibility or lower back flexibility and lower back health is not documented. Future studies are needed to explore the influence of hamstring flexibility on lower back health. The need to develop a more practical field test with improved validity for hamstring and lower back flexibility is apparent.

In conclusion, the criterion related validity of all SR protocols appears to be similar. Practitioners should use the BSSR test with caution if flexibility of the lower back is the goal of the measurement process. It also eliminates excessive posterior compression of the vertebral disk when performing a single leg reach. In addition, because the reliability of SR tests is very high, one measurement seems to be sufficient to ensure accuracy when warm up stretching and practice are allowed.

Authors’ affiliations
1 G Baltaci, V Tunay, A Besler, School of Physiotherapy and Rehabilitation, Hacettepe University, Ankara, Turkey
2 N Un, School of Physiotherapy and Rehabilitation, Abant Izzet Baysal University, Ankara
3 S Gerkseker, Physical Medicine and Rehabilitation Department, Gulhane Military Hospital, Ankara

REFERENCES

Comparison of three different sit and reach tests for measurement of hamstring flexibility in female university students

G Baltaci, N Un, V Tunay, A Besler and S Gerçeker

doi: 10.1136/bjsm.37.1.59

Updated information and services can be found at:
http://bjsm.bmj.com/content/37/1/59

These include:

References
This article cites 10 articles, 0 of which you can access for free at:
http://bjsm.bmj.com/content/37/1/59#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/