A nomogram for assessment of breathing patterns during treadmill exercise

J Naranjo, R A Centeno, D Galiano, M Beaus

Objective: To assess the breathing patterns of trained athletes under different conditions. The hypothesis is that the breathing pattern during a progressive treadmill exercise is independent of the protocol, at least in healthy people, and can be assessed using a nomogram.

Methods: A total of 43 male and 21 female athletes from different sports were studied. They performed one of two different protocols (steps or ramp) on a treadmill. The two protocols started at the same speed and had the same rate of increase in work. During the test, the expired air was analysed for CO₂ and O₂.

Ventilation (VE) was continuously recorded, and tidal volume (VT) and breathing frequency (BF) at the same intensity were analysed for both protocols, as well as VT/Ti and Ti/Ttot.

Results: No significant differences were observed in VT and BF between the two protocols in either the men or women at any level [confidence intervals up to 0.958 in all the groups]. Ti/Ttot remained constant, and all increases in VE were strongly related to the respective increases in VT/Ti. Plots of data for men and women showed a curvilinear relation between VT and BF which could be fitted with an exponential function with a strong correlation (R² = 0.98 for men and 0.97 for women).

Conclusions: Graphic expression of VT vs BF is a useful nomogram for the routine assessment of ventilatory response during exercise in healthy trained subjects.

MATERIALS AND METHODS

Subjects

We studied 43 men (mean (SD) age 24.5 (6.17) years) and 21 women (22.33 (4.07) years). All were trained athletes from seven different sports: athletics (endurance, n = 21; speed, n = 10; jumps, n = 1), football (n = 7), taekwondo (n = 3), gymnastics (n = 3), tennis (n = 6), triathlon (n = 5), and pentathlon (n = 8).

Methods

All the subjects performed an effort test to exhaustion on a treadmill (Power Jog, GXC-200) following one of two different protocols (fig 1): (a) a step protocol with a prior warm up for three minutes at 8 km/h, starting at 9 km/h for women and 10.8 km/h for men and increasing 1.8 km/h every three minutes (n = 27; 17 men and 10 women); (b) a ramp protocol with a prior warm up for three minutes at 8 km/h, starting at 9 km/h for women and 10.8 km/h for men and increasing 0.2 km/h every 20 seconds (n = 37; 26 men and 11 women). In both protocols the slope was fixed at 1%, and the rate of increase in work was identical.

All the subjects had an electrocardiogram and a spirogram at rest before the test.

During the test the expired air was collected through a face mask and analysed in a CPX Medical Graphics analyser.

Abbreviations: BF, breathing frequency; Ti, inspiratory time; Ttot, total respiratory time; VE, ventilation; VT, tidal volume.
(infrared for CO₂ and zirconium cell for O₂). Recording the instantaneous flow by a pneumotachometer attached to a differential pressure transducer, we registered the average inspiratory and expiratory duration, and BF, obtaining the mean value from the last minute for every intensity in the step protocol, and the mean of 30 seconds at the same intensity for the ramp protocol.

All the subjects gave written and informed consent. The study was approved by the ethics committee of the Andalusian Center for Sports Medicine.

All the tests were carried out in the same conditions, by the same researchers, and with previous calibration of all the measuring instruments.

Statistical analysis

The results were included in a database for statistical and graphic analysis applying tendency studies and its respective correlation rates (R^2). The confidence intervals were determined through the correlation coefficient. Student’s t test was used to determine significance, with $p<0.05$ taken to indicate significance.

Table 1 Basic details of the subjects

<table>
<thead>
<tr>
<th></th>
<th>Men (n = 43)</th>
<th>Women (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>24.50 (6.17)</td>
<td>22.33 (4.07)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>69.40 (6.56)</td>
<td>57.71 (7.55)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>175.44 (5.74)</td>
<td>162.81 (7.46)</td>
</tr>
<tr>
<td>Vital capacity (litres)</td>
<td>5.21 (0.53)</td>
<td>3.85 (0.44)</td>
</tr>
<tr>
<td>$\dot{V}O_2\max$ (ml/kg/min)</td>
<td>56.65 (6.40)</td>
<td>48.55 (4.07)</td>
</tr>
</tbody>
</table>

Values are mean (SD).

RESULTS

Table 1 shows basic details of the subjects.

All the subjects reached maximal effort, and all criteria for the tests performed were maximum. The mean top speed was higher in the step protocol than in the ramp protocol for both men and women.

We focused on VE and the relations between its components. Tables 2 and 3 show Vt and BF for men and women respectively at different work levels and for the two protocols. Vt/Ti showed a strong correlation with VE in both men and women, regardless of the protocol used (fig 2), whereas Ti/Ttot remained nearly constant (table 4).

There were no significant differences between the Vt and BF data from the two protocols: $p>0.1$ for Vt for the men and $p>0.3$ for the rest, which are very far from the significance level fixed at 0.05. The correlation coefficient between Vt and BF was 0.958 for men on the step protocol, 0.965 for men on the ramp protocol, 0.954 for women on the step protocol, and 0.922 for women on the ramp protocol. Vt v BF was exponential for the four groups and similar for men and women (ramp or step; fig 3) with R^2 values above 0.95. This relation is maintained even if we express Vt as a percentage of vital capacity (fig 4).

No significant differences were observed in Vt and BF between the two protocols in men or women at any level. This is true even if Vt is expressed as a percentage of vital capacity during treadmill exercise.

![Figure 1](http://bjsportmed.com)
Figure 1 Rate of increase in work in both protocols (ramp and steps).

Table 2 Tidal volume and breathing frequency for men at different work levels for the step and ramp protocols

<table>
<thead>
<tr>
<th></th>
<th>Step (n = 17)</th>
<th>Ramp (n = 26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vt (litres)</td>
<td>BF (breathing frequency)</td>
<td></td>
</tr>
<tr>
<td>Rest</td>
<td>0.82 (0.26)</td>
<td>16.00 (4.04)</td>
</tr>
<tr>
<td>Warm up</td>
<td>1.81 (0.44)</td>
<td>29.55 (7.60)</td>
</tr>
<tr>
<td>10.8 km/h</td>
<td>1.96 (0.35)</td>
<td>34.44 (8.16)</td>
</tr>
<tr>
<td>12.6 km/h</td>
<td>2.07 (0.30)</td>
<td>39.61 (9.27)</td>
</tr>
<tr>
<td>14.4 km/h</td>
<td>2.21 (0.31)</td>
<td>45.25 (9.40)</td>
</tr>
<tr>
<td>16.2 km/h</td>
<td>2.40 (0.30)</td>
<td>51.92 (9.29)</td>
</tr>
<tr>
<td>18.0 km/h</td>
<td>2.70 (0.32)</td>
<td>62.00 (9.15)</td>
</tr>
</tbody>
</table>

Values are mean (SD).

Table 3 Tidal volume and breathing frequency for women at different work levels for the step and ramp protocols

<table>
<thead>
<tr>
<th></th>
<th>Step (n = 10)</th>
<th>Ramp (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vt (litres)</td>
<td>BF (breathing frequency)</td>
<td></td>
</tr>
<tr>
<td>Rest</td>
<td>0.60 (0.20)</td>
<td>17.29 (4.79)</td>
</tr>
<tr>
<td>Warm up</td>
<td>1.37 (0.30)</td>
<td>33.10 (6.80)</td>
</tr>
<tr>
<td>9.0 km/h</td>
<td>1.44 (0.32)</td>
<td>36.14 (6.04)</td>
</tr>
<tr>
<td>10.8 km/h</td>
<td>1.58 (0.35)</td>
<td>39.24 (6.11)</td>
</tr>
<tr>
<td>12.6 km/h</td>
<td>1.67 (0.37)</td>
<td>45.70 (8.70)</td>
</tr>
<tr>
<td>14.4 km/h</td>
<td>1.71 (0.36)</td>
<td>52.90 (7.84)</td>
</tr>
<tr>
<td>16.2 km/h</td>
<td>1.95 (0.34)</td>
<td>59.00 (7.20)</td>
</tr>
</tbody>
</table>

Values are mean (SD).

Vt, Tidal volume (litres); BF, breathing frequency.
capacity. Therefore analysis of all data for men and women shows an exponential relation (fig 5) with a strong correlation ($R^2 = 0.98$ for men and 0.97 for women).

DISCUSSION

It is known that V_t/T_i is the order to switch on the system and T_i/T_{tot} is the order to switch off inspiration, determining the rate of V_t and BF. The two parameters have a similar response in healthy people when ventilation is stimulated, no matter what the stimulus (exercise, CO$_2$ inhalation, etc).41,5 and this response maintains the T_i/T_{tot} relation, with a resulting increase in inspiratory flow. Grunstein et al.16 demonstrated with anaesthetised cats that the control of T_{tot} depends on both the T_i of the preceding breath (phasic component) and a separate vagal mechanism specifically

![Figure 2](image2.png)
Figure 2 Relation between the ratio of tidal volume to inspiratory time (V_t/T_i) and ventilation (VE). It is linear in both men and women. Data from the two protocols are averaged.

![Figure 3](image3.png)
Figure 3 Relation between tidal volume (V_t) and breathing frequency (BF) in men and women on the step and ramp protocols.

![Figure 4](image4.png)
Figure 4 Relation between tidal volume (V_t) and breathing frequency (BF) in men and women expressed as a percentage of vital capacity (VC).

![Figure 5](image5.png)
Figure 5 Graph showing the exponential relation between tidal volume (V_t) and breathing frequency (BF) for both men and women. This can be used as a nomogram for assessing breathing patterns in healthy people during exercise regardless of the protocol. Means and standard deviations are shown.

![Figure 6](image6.png)
Figure 6 Two examples of inappropriate use of breathing pattern during exercise assessed with the proposed nomogram. (A) Effort test of a professional male soccer player (VO$_2$MAX = 61 ml/kg/min; VEMAX = 112 litres/min) with a previous diagnosis of overtraining syndrome; (B) effort test of an elite female 400 m runner (VO$_2$MAX = 53.4 ml/kg/min; VEMAX = 90.2 litres/min) with a previous diagnosis of exercise induced asthma.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Correlation between ventilation and tidal volume to inspiratory time ratio (V_t/T_i) and inspiratory time to total respiratory time ratio (T_i/T_{tot})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
</tr>
<tr>
<td>V_t/T_i</td>
<td>T_i/T_{tot}</td>
</tr>
<tr>
<td>Warm up</td>
<td>0.44</td>
</tr>
<tr>
<td>10.8 km/h</td>
<td>1.79</td>
</tr>
<tr>
<td>12.6 km/h</td>
<td>2.21</td>
</tr>
<tr>
<td>14.4 km/h</td>
<td>2.71</td>
</tr>
<tr>
<td>16.2 km/h</td>
<td>3.33</td>
</tr>
<tr>
<td>18.0 km/h</td>
<td>4.13</td>
</tr>
</tbody>
</table>

www.bjsportmed.com
What is already known on this topic

- VT/Ti increases with progressive exercise
- Most authors agree that VT/Ti remains constant in healthy people during exercise
- The relation of VT to BF is no longer used in the routine assessment of ventilatory response to exercise
- Most studies have been carried out with cycle ergometers

What this study adds

- VE is closely linked to changes in VT/Ti, so it is possible to reintroduce simple evaluation of VT and BF during exercise
- The response has been assessed using a treadmill comparing two different protocols
- VT and BF show an exponential relation independent of the protocol used and of how well trained the subject is

affecting the duration of expiration in response to changes in the absolute end expiratory lung volume.

In people with chronic airflow limitation, BF may be conditioned by an increase in duration of expiration, but in healthy people the ratio between inspiration and expiration is remarkably constant during exercise,17 and so the increase in VE depends on changes in VT/Ti. This allows us to analyse the relation between VT and BF during exercise, accepting that a high BF relative to a given VT will result in a less effective ventilation.

Some studies report that different step durations alter mean inspiratory flow,16 but others found that VT/Ti and VT/Ti in were similar at different intensities of the ramp protocol.11 However, these studies were comparing two durations or two intensities in the same protocol (ramp or step), but are there differences in breathing patterns between the two different protocols? Although we could expect a different response between the ramp and step protocols, given that one is progressive and the other tends to the steady state, we found the same response regardless of the protocol. In agreement with other studies,6,7,11 we believe that, no matter how well trained the subject is or what protocol is used to assess it, for a given intensity of effort, ventilation behaves in a similar way after a central order (VT/Ti).

The constant relation between VT and BF in healthy people during exercise responds to the intensity of effort but not to the way of achieving it. This is in accordance with previous observations from our laboratory14 and suggests that, at least in athletes, all ventilation effectively becomes alveolar during exercise. It requires reasonable use of BF and suggests that the respiratory muscle endurance in trained subjects is a consequence of the adopted breathing pattern,19 and this may be trained.20

Figure 6 shows two examples of the practical application of this nomogram. In both cases we observe an inappropriate use of BF for each VT.

In conclusion, as we consider that the sample (n = 64) is adequate with a variety of sports represented, we propose this graphic expression of the relation VT vs BF as a useful nomogram for assessing ventilatory response during exercise. We believe that it can provide useful information in the routine assessment of the response to exercise in healthy people.

text continues...
A nomogram for assessment of breathing patterns during treadmill exercise

J Naranjo, R A Centeno, D Galiano and M Beaus

doi: 10.1136/bjsm.2003.009316

Updated information and services can be found at:
http://bjsm.bmj.com/content/39/2/80

These include:

References
This article cites 19 articles, 3 of which you can access for free at:
http://bjsm.bmj.com/content/39/2/80#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/