Diffusely increased bone scintigraphic uptake in patellofemoral pain syndrome

J E Näslund, S Odenbring, U-B Näslund, T Lundeberg

Original Article

P atellofemoral pain syndrome (PFPS), also called anterior knee pain (AKP), is one of the most common musculoskeletal disorders1 2 and is reported to affect 15–33% of the adult population and 21–45% of adolescents.3 4 Athletes and non-athletes of both genders are affected.5 Among adolescents the incidence is reported to be higher for girls.6 7

PFPS is characterised by pain in the front of the knee, which is often worsened by climbing or descending stairs and by sitting for long periods. There has been no consensus on the definition, classification, assessment, diagnosis, or management of PFPS. The literature suffers from a lack of standardisation in terms of diagnoses, pain scales, small sample size, absence of blinding, absence of stratification for severity, duration of symptoms, and patient age. Although the cause of PFPS is obscure, it has been generally accepted as being secondary either to the presence of chondromalacia or to patellar malalignment. Studies, however, have reported that chondromalacic changes can be asymptomatic but also that patients with normal articular cartilage can experience AKP.8

Reports have also questioned a causal relationship between malalignment and knee discomfort in the majority of PFPS patients.1 2 A different aetiology that takes the pain mechanism into consideration has been proposed by Dye et al.9 The authors suggested that PFPS may be attributed to a possible loss of both osseous and soft tissue homeostasis. Patellofemoral synovial and fat pad irritation secondary to mechanical or biochemical factors are reported to be a common cause of pain.6 High intraosseous pressure has been suggested as a pain mechanism.9 Although PFPS is considered to be one of the most typical forms of nociceptive pain, a contribution of a neurogenic mechanism has also been mentioned.10 11 Merchant12 suggested that one subgroup of PFPS was reflex sympathetic dystrophy of the patella. Butler-Manuel13 reported an involvement of the sympathetic nervous system in PFPS.

Bone metabolism and bone remodelling can be evaluated by specific bone seeking radionuclides in a scintigraphic measurement. A positive bone scintigraphy indicates an increase in bone metabolism, but the method cannot determine whether the final result will be a net loss or a net gain in bone. A pathophysiologically increased bone scintigraphy indicates an aetiological relationship between the area with increased bone metabolism and the patient’s symptoms. The method can distinguish between localised skeletal conditions, such as stress fractures in the bone, and diffuse increased bone turnover.

Bone scintigraphy has been suggested as one method that can be used in the evaluation of patients with AKP because it depicts physiological features whereas radiography presents biomechanical information.14–16 Studies have reported tracer uptake to be located in the tibiofemoral compartment, the patellar compartment, and both.17 18

The aims of this study were to determine whether the bone scintigrams of patients suffering from PFPS show diffuse uptake and in what bony compartment in the knee the uptake, if any, was localised.

Methods: Fifty eight patients with chronic PFPS were examined. All patients underwent a detailed clinical history and a thorough physical examination of the knee. Anterior and lateral static images of both knees were made using a gamma camera 3 h after injection of 550 MBq of ⁹⁹mTc-HMDP. Two experienced radiologists visually evaluated the scans blindly and separately. As 51 patients had bilateral pain, 109 painful knees are included in the results.

Results: Diffuse uptake on bone scintigrams was found in 48 knees in 30 of the patients. In 33 knees the uptake was localised to only one bone compartment, in 10 knees diffuse uptake was found in two of the bones forming the knee joint, and in six knees all three bone compartments (the distal femur, the patella, and the proximal tibia) exhibited diffuse uptake.

Conclusions: Scintigrams of approximately half of the patients with PFPS will show diffuse uptake in one or more of the bony compartments of the knee joint and radioactive tracer accumulation will occur as often in the proximal tibia as in the patella.

Abbreviations: AKP, anterior knee pain; BMD, bone mineral density; MTSS, medial tibial stress syndrome; PFPS, patellofemoral pain syndrome

Accepted 6 April 2004
included if they had activity induced pain for more than 6 months, in two out of the following three situations: (i) when climbing stairs; (ii) on squatting; or (iii) after prolonged sitting. Patient characteristics are given in table 1.

Exclusion criteria
Patients were excluded if the clinical examination revealed any symptoms suggesting other pathology of the knee joint such as ligament or meniscus tears, synovial plica, tendinopathy, apophysitis, osteoarthritis, osteochondritis dissecans, neuroma, or fat pad impingement. Pathology discovered on radiographic or scintigraphic examinations also led to exclusion. Diffuse uptake on scintigraphy was not regarded as pathologic. Focal uptake patterns were excluded but were only found in one of the patients originally examined.19

Scintigraphy
Static anterior and lateral images of both knees were obtained using a gamma camera 3 h after injection of 550 MBq of 99mTc-HMDP (fig 1). The scans were visually evaluated blindly and separately by two experienced radiologists who then reached a consensus.

Statistics
Data are presented as binomial: diffuse uptake or no diffuse uptake.

RESULTS
Of the 58 patients, seven experienced unilateral pain and 51 bilateral pain. A total of 109 painful knees are included in the study.

Diffuse uptake on bone scintigraphy was found in 48 knees (48/109, 44%) in 30 patients (30/58, 52%). In 33 knees, uptake was localised to only one bone compartment, in 10 knees diffuse uptake was found in two of the bones forming the knee joint, and in six knees all three bone compartments (the distal femur, the patella, and the proximal tibia) exhibited diffuse uptake (fig 2).

When diffuse uptake was found to be distributed into the bony compartments, the patella was the bone that was most affected. Of the 48 affected knees, uptake in the patella was found in 27, uptake in the proximal tibia in 25, and uptake in the distal femur in 19. Uptake in the femur and the tibia only occurred in the condyles.

None of the scintigrams of the seven patients reporting unilateral pain exhibited any diffuse uptake at non-painful sites.

DISCUSSION
In this study we were able to confirm previous studies reporting diffuse uptake on bone scintigraphy of patients diagnosed with PFPS. We found that the scintigrams of 44% of the painful knees and 52% of the patients showed diffuse uptake. This is in agreement with previous studies13 15 17 which reported uptake in 40–55% of the patients.

Loberboym et al.20 using single photon emission computed tomography, found diffuse and focal uptake in 100% of the patellae and in 67% of the distal femurs examined.

For ethical reasons, we examined no control group scintigraphically in our study. However, diffuse uptake in control groups is reported to be between 4% and 9%.15 17

Historically, use of bone scintigraphy to gather information on the knee has been limited. 99mTc labelled methylene diphosphonate, which has an affinity for hydroxyapatite and is correlated to the activity of the osteoblasts, has been used. Increases in osteoblastic activity as low as 10% can be detected with this method.21 Sensitivity is reported to be about 95%, but specificity is poor as every disease or injury with increased bone metabolism will be detected.22 The ability of bone scintigraphy to detect, with high sensitivity, early changes in bone metabolism and bone vascularisation is the basis of its clinical usefulness.22

It is not known whether the diffuse uptake observed on bone scintigrams of patients with PFPS is related to the cause or is a result of the syndrome. Although scintigraphy is

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects (n)</td>
<td>58</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>Age (years)</td>
<td>33.9</td>
<td>34.4</td>
<td>33.5</td>
</tr>
<tr>
<td>Bilateral pain (n)</td>
<td>51</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>Pain duration (years)</td>
<td>8.4</td>
<td>8.3</td>
<td>8.5</td>
</tr>
<tr>
<td>Pain on climbing stairs (n)</td>
<td>57</td>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>Pain on squatting (n)</td>
<td>57</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>Pain after sitting for long periods (n)</td>
<td>47</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>Tegner’s activity scale, work (0–10)</td>
<td>2.6</td>
<td>3.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Tegner’s activity scale, sport (0–10)</td>
<td>3.5</td>
<td>3.6</td>
<td>3.4</td>
</tr>
</tbody>
</table>
recognised as very sensitive to increased bone turnover, a positive bone scan is not always associated with symptoms. It is possible that such uptake is caused by a change in physical activity. Our patients had a long history of pain (median 8.4 years) and a low activity level (table 1). On the other hand, other studies have reported diffuse uptake on bone scintigraphy in patients suffering from PFPS despite different inclusion criteria. This could indicate that bone metabolism is involved in approximately half of the patients diagnosed with PFPS and AKP.

Butler-Manuel, Hejgaard and Diemer, and Dye and Boll have reported diffused uptake on bone scintigraphy in 40–55% of patients with PFPS. The authors, however, interpreted this finding differently. Butler-Manuel meant that his patients suffered from reflex sympathetic dystrophy, and he used sympathetic blockades in the treatment of his patients. Hejgaard and Diemer believed that diffuse uptake was secondary to increased intra-medullar pressure and used decompression as the treatment of choice. Dye and Boll proposed a different interpretation of positive findings on a bone scintigram. They developed a theoretical model of osseous homeostasis where one or more triggering factors may increase remodelling activity in bone, which is detectable with scintigraphy. Diffuse uptake on bone scintigraphy has been interpreted as a change in bone turnover that could be due to ischemia or overuse.

We could speculate that the findings of diffuse uptake on bone scintigraphy in approximately half of the patients suffering from PFPS may indicate regions of ischemic stress. This is in accordance with Dye et al who summarised that the genesis behind PFPS is a loss of homeostasis, particularly in peripatellar soft tissue but also in the intraosseous environment of the patella. The ischaemia could be caused by higher intraosseous pressure, or by redundant axial loading, or by decreased arterial blood flow.

PFPS, stress fractures, and medial tibial stress syndrome (MTSS) can be visualised on bone scintigraphy. The appearance of mild increased uptake on bone scintigraphy relates to the mildest form of bone stress and is a sign of accelerated remodelling. Sites where remodelling is occurring contain regions with a temporary loss of bone, measured by dual energy x-ray absorptiometry, and show osteopeni. Magnusson et al concluded that MTSS, with diffusely increased scintigraphic uptake, is associated with low bone mineral density (BMD). The lower BMD was found only in the region corresponding to the pain and diffuse uptake on bone scintigraphy in approximately half of the patients suffering from PFPS despite different inclusion criteria. This could indicate that bone metabolism is involved in approximately half of the patients diagnosed with PFPS.

PFPS, stress fractures, and medial tibial stress syndrome (MTSS) can be visualised on bone scintigraphy. The appearance of mild increased uptake on bone scintigraphy relates to the mildest form of bone stress and is a sign of accelerated remodelling. Sites where remodelling is occurring contain regions with a temporary loss of bone, measured by dual energy x-ray absorptiometry, and show osteopeni. Magnusson et al concluded that MTSS, with diffusely increased scintigraphic uptake, is associated with low bone mineral density (BMD). The lower BMD was found only in the region corresponding to the pain and diffuse uptake on bone scintigraphy in approximately half of the patients suffering from PFPS despite different inclusion criteria. This could indicate that bone metabolism is involved in approximately half of the patients diagnosed with PFPS and AKP.

Butler-Manuel, Hejgaard and Diemer, and Dye and Boll have reported diffused uptake on bone scintigraphy in 40–55% of patients with PFPS. The authors, however, interpreted this finding differently. Butler-Manuel meant that his patients suffered from reflex sympathetic dystrophy, and he used sympathetic blockades in the treatment of his patients. Hejgaard and Diemer believed that diffuse uptake was secondary to increased intra-medullar pressure and used decompression as the treatment of choice. Dye and Boll proposed a different interpretation of positive findings on a bone scintigram. They developed a theoretical model of osseous homeostasis where one or more triggering factors may increase remodelling activity in bone, which is detectable with scintigraphy. Diffuse uptake on bone scintigraphy has been interpreted as a change in bone turnover that could be due to ischemia or overuse.

We could speculate that the findings of diffuse uptake on bone scintigraphy in approximately half of the patients suffering from PFPS may indicate regions of ischemic stress. This is in accordance with Dye et al who summarised that the genesis behind PFPS is a loss of homeostasis, particularly in peripatellar soft tissue but also in the intraosseous environment of the patella. The ischaemia could be caused by higher intraosseous pressure, or by redundant axial loading, or by decreased arterial blood flow.

PFPS, stress fractures, and medial tibial stress syndrome (MTSS) can be visualised on bone scintigraphy. The appearance of mild increased uptake on bone scintigraphy relates to the mildest form of bone stress and is a sign of accelerated remodelling. Sites where remodelling is occurring contain regions with a temporary loss of bone, measured by dual energy x-ray absorptiometry, and show osteopeni. Magnusson et al concluded that MTSS, with diffusely increased scintigraphic uptake, is associated with low bone mineral density (BMD). The lower BMD was found only in the region corresponding to the pain and diffuse uptake on bone scintigraphy in approximately half of the patients suffering from PFPS despite different inclusion criteria. This could indicate that bone metabolism is involved in approximately half of the patients diagnosed with PFPS and AKP.

Butler-Manuel, Hejgaard and Diemer, and Dye and Boll have reported diffused uptake on bone scintigraphy in 40–55% of patients with PFPS. The authors, however, interpreted this finding differently. Butler-Manuel meant that his patients suffered from reflex sympathetic dystrophy, and he used sympathetic blockades in the treatment of his patients. Hejgaard and Diemer believed that diffuse uptake was secondary to increased intra-medullar pressure and used decompression as the treatment of choice. Dye and Boll proposed a different interpretation of positive findings on a bone scintigram. They developed a theoretical model of osseous homeostasis where one or more triggering factors may increase remodelling activity in bone, which is detectable with scintigraphy. Diffuse uptake on bone scintigraphy has been interpreted as a change in bone turnover that could be due to ischemia or overuse.

We could speculate that the findings of diffuse uptake on bone scintigraphy in approximately half of the patients suffering from PFPS may indicate regions of ischemic stress. This is in accordance with Dye et al who summarised that the genesis behind PFPS is a loss of homeostasis, particularly in peripatellar soft tissue but also in the intraosseous environment of the patella. The ischaemia could be caused by higher intraosseous pressure, or by redundant axial loading, or by decreased arterial blood flow.

PFPS, stress fractures, and medial tibial stress syndrome (MTSS) can be visualised on bone scintigraphy. The appearance of mild increased uptake on bone scintigraphy relates to the mildest form of bone stress and is a sign of accelerated remodelling. Sites where remodelling is occurring contain regions with a temporary loss of bone, measured by dual energy x-ray absorptiometry, and show osteopeni. Magnusson et al concluded that MTSS, with diffusely increased scintigraphic uptake, is associated with low bone mineral density (BMD). The lower BMD was found only in the region corresponding to the pain and diffuse uptake on bone scintigraphy in approximately half of the patients suffering from PFPS despite different inclusion criteria. This could indicate that bone metabolism is involved in approximately half of the patients diagnosed with PFPS and AKP.

Butler-Manuel, Hejgaard and Diemer, and Dye and Boll have reported diffused uptake on bone scintigraphy in 40–55% of patients with PFPS. The authors, however, interpreted this finding differently. Butler-Manuel meant that his patients suffered from reflex sympathetic dystrophy, and he used sympathetic blockades in the treatment of his patients. Hejgaard and Diemer believed that diffuse uptake was secondary to increased intra-medullar pressure and used decompression as the treatment of choice. Dye and Boll proposed a different interpretation of positive findings on a bone scintigram. They developed a theoretical model of osseous homeostasis where one or more triggering factors may increase remodelling activity in bone, which is detectable with scintigraphy. Diffuse uptake on bone scintigraphy has been interpreted as a change in bone turnover that could be due to ischemia or overuse.

Competing interests: none declared

What is already known on this topic

Patellofemoral pain syndrome (PFPS) is one of the most common musculoskeletal disorders and is characterised by pain in the front of the knee.

What this study adds

Scintigrams of approximately half of the patients with PFPS will show diffuse uptake in one or more of the bony compartments of the knee joint and radioactive tracer accumulation will occur as often in the proximal tibia as in the patella.

REFERENCES

Effect of sporting activity on absenteeism in a working population
S G van den Heuvel, H C Boshuizen, V H Hildebrandt, et al

Objectives: To determine the effects of sporting activity on absenteeism in a working population.

Methods: Data were used from a prospective cohort study in a working population with a follow-up period of 3 years and were collected with yearly questionnaires or collected from company records. Complete data on absenteeism, sporting activity, and potential confounders were collected for 1228 workers. ANOVA was used to test differences in frequency and duration of absenteeism, correlations were computed to measure the association between number of sporting years and absenteeism, and survival analysis, according to the Cox proportional hazards model, was used to test differences in relative risk at absenteeism and recovery. All analyses were adjusted for age, gender, smoking, and alcohol consumption, and were stratified for employees with sedentary and with more active jobs.

Results: ANOVA showed a statistically significant higher mean duration of absenteeism among employees not practicing sports, of approximately 20 days over a period of 4 years. The survival analysis showed an increased relative risk at absenteeism (relative risk (RR) 1.09; confidence interval (CI) 1.01 to 1.18) and a decreased relative risk at recovery (RR 0.90; CI 0.85 to 0.95) for employees not practicing sports. The effect of sporting activity is larger in employees with sedentary work. No associations were found between number of sporting years and absenteeism.

Conclusion: Employees practicing sports take sick leave significantly less often than their colleagues not practicing sports, while their periods of sick leave are shorter, especially when their work is sedentary.

Effect of sporting activity on absenteeism in a working population
S G van den Heuvel, H C Boshuizen, V H Hildebrandt, et al

Objectives: To determine the effects of sporting activity on absenteeism in a working population.

Methods: Data were used from a prospective cohort study in a working population with a follow-up period of 3 years and were collected with yearly questionnaires or collected from company records. Complete data on absenteeism, sporting activity, and potential confounders were collected for 1228 workers. ANOVA was used to test differences in frequency and duration of absenteeism, correlations were computed to measure the association between number of sporting years and absenteeism, and survival analysis, according to the Cox proportional hazards model, was used to test differences in relative risk at absenteeism and recovery. All analyses were adjusted for age, gender, smoking, and alcohol consumption, and were stratified for employees with sedentary and with more active jobs.

Results: ANOVA showed a statistically significant higher mean duration of absenteeism among employees not practicing sports, of approximately 20 days over a period of 4 years. The survival analysis showed an increased relative risk at absenteeism (relative risk (RR) 1.09; confidence interval (CI) 1.01 to 1.18) and a decreased relative risk at recovery (RR 0.90; CI 0.85 to 0.95) for employees not practicing sports. The effect of sporting activity is larger in employees with sedentary work. No associations were found between number of sporting years and absenteeism.

Conclusion: Employees practicing sports take sick leave significantly less often than their colleagues not practicing sports, while their periods of sick leave are shorter, especially when their work is sedentary.
Diffusely increased bone scintigraphic uptake in patellofemoral pain syndrome

J E Näslund, S Odenbring, U-B Näslund and T Lundeberg

doi: 10.1136/bjsm.2004.012336

Updated information and services can be found at: http://bjsm.bmj.com/content/39/3/162

These include:

References
This article cites 36 articles, 1 of which you can access for free at: http://bjsm.bmj.com/content/39/3/162#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Patellofemoral pain (52)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/