Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia

G Blain, O Meste, T Bouchard, S Berman

Objective: To test whether ventilatory thresholds, measured during an exercise test, could be assessed using time varying analysis of respiratory sinus arrhythmia frequency (fRSA).

Methods: Fourteen sedentary subjects and 12 endurance athletes performed a graded and maximal exercise test on a cycle ergometer: initial load 75 W (sedentary subjects) and 150 W (athletes), increments 37.5 W/2 min. fRSA was extracted from heart period series using an evolutive model. First (TV1) and second (TV2) ventilatory thresholds were determined from the time course curves of ventilation and ventilatory equivalents for O2 and CO2.

Results: fRSA was accurately extracted from all recordings and positively correlated to respiratory frequency (r=0.96 (0.03), p<0.01). In 21 of the 26 subjects, two successive non-linear increases were determined in fRSA, defining the first (T RSA1) and second (T RSA2) RSA thresholds. When expressed as a function of power, T RSA1 and T RSA2 were not significantly different from and closely linked to TV1 (r=0.99, p<0.001) and TV2 (r=0.99, p<0.001), respectively. In the five remaining subjects, only one non-linear increase was observed close to TV2. Significant differences (p<0.04) were found between athlete and sedentary groups when T RSA1 and T RSA2 were expressed in terms of absolute and relative power and percentage of maximal aerobic power. In the sedentary group, T RSA1 and T RSA2 were 150.3 (18.7) W and 198.3 (28.8) W, respectively, whereas in the athlete group T RSA1 and T RSA2 were 247.3 (32.8) W and 316.0 (28.8) W, respectively.

Conclusions: Dynamic analysis of fRSA provides a useful tool for identifying ventilatory thresholds during graded and maximal exercise test in sedentary subjects and athletes.

METHODS

Subjects

Fourteen sedentary healthy men (mean (SD) age: 24.5 (2.3) years) and 12 endurance athletes (age: 25.7 (2.8) years; >12 h of training/week) (characteristics shown in table 1) participated in the study. All subjects were non-smokers and none was taking medication. Physical activity and consumption of alcohol and caffeinated beverages were prohibited 24 h before the exercise testing session. Written informed consent was obtained prior to participation and ethical approval was granted by the Local Ethics Committee.

Experimental design

Subjects performed a graded and maximal exercise test on a cycle ergometer (Ergomedic 824 E, Monark Exercise, Vansbro, Sweden) in a quiet room at a controlled temperature of 21°C, at least 3 h after the last meal. In the sedentary and the athlete

Abbreviations: AT, anaerobic threshold; HP, heart period; HPV, heart period variability; RSA, respiratory sinus arrhythmia
groups, the initial load was fixed at 75 and 150 W, respectively, and increased by 37.5 W every 2 min until exhaustion. The pedalling rate was kept constant at 75 rev/min.

Ventilatory indices and gas exchanges were measured using an automatic ergospirometer on a breath by breath basis (Metasys TR-M, Brainware, Toulon, France). Subjects breathed through a silicon facemask connected to a two-way non-rebreathing valve (Hans Rudolph, Kansas City, MO). Inspired and expired O2 and CO2 concentrations were measured using paramagnetic and infrared sensors, respectively. Averages every 10 s were then established for V˙I (l/min), CO2 production (V˙co2, l/min), O2 uptake (V˙o2, l/min), V˙I/V˙o2, and V˙I/V˙co2. The pedalling rate was kept constant at 75 rev/min.

and increased by 37.5 W every 2 min until exhaustion. The local mean HP was also removed using a polynomial approximation method (order equal to 20) and a 100th order high pass finite impulse response filter was applied to the detrended HP series. Since the stationarity conditions are not fulfilled under dynamic exercise, classical spectral analysis methods were replaced by a previously described method. Using this method, the dynamic behaviour of fRSA was extracted.

ECG preprocessing was performed using Matlab software 6.0 R12 (MathWorks, Natick, MA).

Table 1: Anthropometric and maximal ergometric characteristics of the subjects

<table>
<thead>
<tr>
<th></th>
<th>Sedentary group (n = 14)</th>
<th>Athlete group (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>24.5 ± 2.3</td>
<td>25.7 ± 2.8</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>173.4 ± 9.1</td>
<td>183.8 ± 5.6</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>68.3 ± 9.9</td>
<td>81.4 ± 8.5</td>
</tr>
<tr>
<td>V˙O2max (ml/min/kg)</td>
<td>44.7 ± 4.6</td>
<td>56.4 ± 9.3</td>
</tr>
<tr>
<td>Wmax (W)</td>
<td>266.6 ± 77.1</td>
<td>383.9 ± 26.6</td>
</tr>
<tr>
<td>Wmax (W/kg)</td>
<td>3.96 ± 0.44</td>
<td>4.78 ± 0.72</td>
</tr>
<tr>
<td>HRmax (bpm)</td>
<td>197.6 ± 7.8</td>
<td>183.3 ± 5.7</td>
</tr>
</tbody>
</table>

HR, heart rate; NS, not significant; V˙O2max, maximal oxygen uptake; Wmax, maximal aerobic power. Differences between groups: *p<0.01; **p<0.001.

Table 2: First and second thresholds obtained from fRSA and ventilatory indices, in sedentary and athlete groups

<table>
<thead>
<tr>
<th></th>
<th>Sedentary group (n = 12)</th>
<th>Athlete group (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute power (W)</td>
<td>150.3 ± 18.7</td>
<td>247.3 ± 32.8</td>
</tr>
<tr>
<td>V1</td>
<td>151.0 ± 19.5</td>
<td>247.0 ± 33.6</td>
</tr>
<tr>
<td>V2</td>
<td>198.3 ± 28.8</td>
<td>316.0 ± 28.8</td>
</tr>
<tr>
<td>TRSA1</td>
<td>200.3 ± 29.4</td>
<td>310.9 ± 26.7</td>
</tr>
<tr>
<td>TRSA2</td>
<td>2.21 ± 0.33</td>
<td>3.09 ± 0.64</td>
</tr>
<tr>
<td>TV1</td>
<td>2.22 ± 0.34</td>
<td>3.09 ± 0.65</td>
</tr>
<tr>
<td>TV2</td>
<td>2.94 ± 0.39</td>
<td>3.96 ± 0.67</td>
</tr>
<tr>
<td>TRSA2</td>
<td>2.97 ± 0.38</td>
<td>3.90 ± 0.66</td>
</tr>
<tr>
<td>V1</td>
<td>56.5 ± 6.0</td>
<td>62.5 ± 6.6</td>
</tr>
<tr>
<td>V2</td>
<td>56.8 ± 6.7</td>
<td>62.3 ± 5.7</td>
</tr>
<tr>
<td>TRSA2</td>
<td>74.4 ± 7.5</td>
<td>82.4 ± 4.9</td>
</tr>
<tr>
<td>Wmax</td>
<td>75.1 ± 7.6</td>
<td>81.0 ± 4.9</td>
</tr>
</tbody>
</table>

% Wmax, percentage of maximal aerobic power; TRSA1, first respiratory sinus arrhythmia frequency (fRSA) threshold; TRSA2, second fRSA threshold; TV1, first ventilatory threshold; TV2, second ventilatory threshold. Differences between groups: *p<0.05; **p<0.01; ***p<0.001.

Results

Athletes showed significantly higher values of V˙O2 and Wmax when compared to sedentary subjects (see table 1).
f_{RSA} extraction

A conspicuous high frequency oscillation synchronous with \(f_R \) was found in all ECG recordings, clearly indicating the persistence of RSA over the entire graded and maximal exercise protocol. The dynamic evolution of \(f_{RSA} \) was accurately extracted from the HP series and \(f_{RSA} \) positively correlated (\(r = 0.96 \) (0.03), \(p < 0.01 \)) with \(f_R \) (fig 1).

f_{RSA} dynamic behaviour

Two non-linear increases were observed in \(f_{RSA} \) in 21 of the 26 subjects. These non-linear increases coincided with \(T_{V1} \) and \(T_{V2} \), respectively (see fig 2) and no statistical difference was observed between \(T_{RSA1} \) and \(T_{V1} \) (absolute power: \(p = 0.98 \); relative power: \(p = 0.90 \); percentage of \(W_{max} \): \(p = 0.91 \)) and \(T_{RSA2} \) and \(T_{V2} \) (absolute power: \(p = 0.57 \); relative power: \(p = 0.79 \); percentage of \(W_{max} \): \(p = 0.78 \)).

Power values and percentages of \(W_{max} \) at \(T_{RSA1} \), \(T_{RSA2} \), \(T_{V1} \), and \(T_{V2} \) are presented in table 2. When expressed as absolute or relative power and percentage of \(W_{max} \), \(T_{RSA1} \), \(T_{RSA2} \), \(T_{V1} \), and \(T_{V2} \) were significantly higher in athletes than in their sedentary peers. Linear regression analysis showed high correlation between \(T_{RSA1} \) and \(T_{V1} \) (absolute power: \(r = 0.99 \), \(p < 0.001 \) (fig 3); relative power: \(r = 0.99 \), \(p < 0.001 \); percentage of \(W_{max} \): \(r = 0.95 \), \(p < 0.001 \)) and \(T_{RSA2} \) and \(T_{V2} \) (absolute power: \(r = 0.99 \), \(p < 0.001 \) (fig 3); relative power: \(r = 0.99 \), \(p < 0.001 \); percentage of \(W_{max} \): \(r = 0.96 \), \(p < 0.001 \)).

In the five remaining subjects (three athletes and two sedentary subjects) only one non-linear increase was clearly identifiable and occurred close to \(T_{V2} \) (fig 4).

DISCUSSION

To assess HPV and RSA during non-stationary exercise conditions, we developed and validated an original method.\(^6\) In the present study, this method was used to process the cardiac electrical signal during a maximal and graded exercise test.

Using our original approach, the dynamic pattern of \(f_{RSA} \) was accurately extracted from R-R interval series; RSA and breathing have been shown to develop dynamically at the same frequency. This result confirms previous findings,\(^7\) which showed that during exercise, heart rate is modulated by breathing at the \(f_R \). When \(f_{RSA} \) was considered, we were able to point out two successive non-linear increases in 81% of our population. First, we observed that \(T_{RSA1} \) was closely related to \(T_{V1} \). This finding is consistent with those of Anosov \(et \ al \)^\(^8\) who reported that significant changes in the behaviour of \(f_{RSA} \) occurred in the region of the AT. As the \(f_{RSA} \) pattern is closely linked to \(f_R \), we could state that the first disproportionate increase in \(V_I \) observed at \(T_{V1} \) is mainly induced by an increase in \(f_R \). This is confirmed by the study of James \(et \ al \)^\(^9\) who concluded that the first ventilatory threshold (referred as the AT in their study) could be detected by \(f_R \) analysis.

Second, we observed that \(T_{RSA2} \) was closely related to \(T_{V2} \), suggesting that the second disproportionate increase in \(V_I \) is again related to \(f_R \) increase. It has been reported that \(T_{V2} \) determines the workload before a marked fall in capillary pH.\(^7\) This exercise induced metabolic acidosis then causes ventilation increase through an increase in \(f_{RSA} \).

The concept of ventilatory thresholds is closely linked in the literature to the concept of AT. AT is defined as the intensity of exercise, involving a large muscle mass, above which the oxidative metabolism cannot account for all the required energy and the anaerobic contribution to energy demand increases.\(^10\) Numerous studies have been conducted to detect one or two thresholds in metabolic (lactate for instance) or ventilatory indices time course curves. This diversity in methods of detection as well as lack of consensus on the theoretical basis have led to confusion and misinterpretation (see Bosquet \(et \ al \)^\(^11\) and Svedahl and MacIntosh\(^12\) for reviews). Using blood lactate concentration is probably the most direct and reliable method to detect the AT.\(^13\) However, this method is invasive and requires...

Figure 1 Representation of the dynamic behaviour of RSA frequency (\(f_{RSA} \), solid line) and respiratory frequency (\(f_R \), dashed line) recorded in one subject during graded and maximal exercise test.

Figure 2 Example of threshold determination using \(f_{RSA} \) (A) and ventilatory (B) methods. \(f_{RSA} \), respiratory sinus arrhythmia frequency; \(T_{RSA1} \), first \(f_{RSA} \) threshold; \(T_{RSA2} \), second \(f_{RSA} \) threshold; \(T_{V1} \), first ventilatory threshold; \(T_{V2} \), second ventilatory threshold; \(V_I \), ventilation; \(V_I/V_O2 \), ventilatory equivalents for \(O_2 \); \(V_I/V_CO2 \), ventilatory equivalents for \(CO_2 \).
frequent blood sampling which is uncomfortable during continuous exercise. The indirect technique using ventilatory indices could be thus preferable. Indeed, although disagreement exists,10 11 ventilatory thresholds are known to be closely related to lactate thresholds.12–16 Ventilatory threshold detection is usually based on assessment of successive disproportionate increases in V_i and f_R is known to play a major role in these increases.17 It is also known that heart activity is modulated by breathing at the f_R and this modulation represents the RSA which is vagally mediated at rest.22–24 Although cardiac vagal tone is totally abolished over $\approx 60\%$ of V_{O_2max}25 to adapt heart activity to cell metabolic demand,26 27 RSA was retrieved over our entire exercise test. This finding confirms that RSA persistence at intense exercise could be related to enhancement of a non-neural mechanism in response to V_i increase. Indeed, changes in thoracic pressure induced by breathing influence filling of the right ventricle.29 Increased right ventricle filling during inspiration consequently increases transmural pressure and stretches the sinus node, thus activating positive chronotropic response via mechanosensitive Cl^{-} channels.30 31

Thus, using f_{RSA} to detect ventilatory thresholds has the advantages of being non-invasive and cheap and may have field application in ambulatory heart rate monitors. Moreover, this technique appears to be reliable in most athletes and sedentary subjects. f_{RSA} thresholds of athletes were detected at higher values than those of their sedentary peers, whatever the mode of expression, confirming that the AT is significantly improved with endurance training.32 33

Thus, this f_{RSA} method could be used for the determination of human ventilatory thresholds over a broad range of physical abilities. However, in 19% of our population only one increase close to T_{V2} was clearly identifiable in f_{RSA}, whereas two ventilatory thresholds were detected. As V_i is the product of f_R and V_i, it could be expected that the first non-linear increases in V_i and V_i/V_{O_2} were mainly related to V_i increase. Indeed, as shown in fig 4, no clear change in f_R was observed around absolute power corresponding to T_{V1}.

Visual detection of both ventilatory and f_{RSA} thresholds can lead to subjective results and may represent a methodological limitation of our study design. Indeed, it has been shown that different evaluators can choose different ventilatory thresholds from the same data.34 However, reliability of the ventilatory method is known to be enhanced when test conditions are kept constant and evaluators are experienced,21 which was the case in our study. Detection of ventilatory threshold is known to be dependant both on stage duration and load increase in graded exercise.35 As no exercise protocol test seems consensual, the standard protocol test used in our laboratory was thus preferred.

![Figure 3](http://bjsportmed.com) Relationships between absolute power measured at T_{RSA1} and T_{V1} (A) and T_{RSA2} and T_{V2} (B). Solid lines represent the regression lines. • Athlete group; ▲ sedentary group. T_{RSA1}, first respiratory sinus arrhythmia frequency (f_{RSA}) threshold; T_{RSA2}, second f_{RSA} threshold; T_{V1}, first ventilatory threshold; T_{V2}, second ventilatory threshold.

![Figure 4](http://bjsportmed.com) Example of lack of clear change in f_{RSA} (A) and f_R (B) in the region of T_{V1}. f_R, respiratory frequency; f_{RSA}, respiratory sinus arrhythmia frequency; T_{RSA2}, second f_{RSA} threshold; T_{V1}, first ventilatory threshold.
Respiratory sinus arrhythmia results from modulation of sinus node activity by breathing and during exercise is the main mechanism regulating short term heart period fluctuations. Strong correlations have been found between the centred frequency of respiratory sinus arrhythmia and respiratory frequency.

We have shown that, in most of our subjects, two successive non-linear increases are observed in f_RSA. These thresholds are closely related to the first and second ventilatory thresholds, respectively. Thus, the method we developed provides a useful tool for identifying the ventilatory thresholds during graded and maximal exercise test in athletes and sedentary subjects as well as for assessing endurance levels. The next step could be to process HP series recorded during an adapted field test using modern heart rate monitors and time varying modelling.

ACKNOWLEDGEMENTS

We thank the Brainware Company for their technical support.

Authors’ affiliations

G Blain, S Bermon, Département Ergonomie Sportive et Performances, Université de Toulon-Var, Nice, France
O Meste, Laboratoire 135, Université de Nice Sophia-Antipolis, Nice, France
T Bouchard, Université de Nice Sophia-Antipolis, Nice, France

Competing interests: none declared

REFERENCES

COMMENTS

During the past 20 years, very many studies have indicated that parameters measured during submaximal exercise may be better markers of endurance performance than V_{O2max}. The anaerobic (or ventilatory) and lactate thresholds being useful parameters to evaluate functional capability in various types of endurance performance. Both gas analysis and ventilatory flow measurements, as well as blood lactate determinations, can be used to estimate the anaerobic threshold as a predictor of endurance capacity. A procedure that would be simple, relatively inexpensive, and non-invasive would be welcome. Procedures based on maximal heart rate (or a percentage of it) are simple but not reliable. Thus, the determination of ventilatory thresholds by time varying analysis of respiratory sinus arrhythmia, as proposed in this paper, appears to be quite promising, providing that it can be used with data obtained by ambulatory heart rate monitors.

Ramon Segura

Physiological Sciences II, Universitat de Barcelona, Barcelona, Spain; rasegura@ub.edu
Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia
G Blain, O Meste, T Bouchard and S Bermon

doi: 10.1136/bjsm.2004.014134

Updated information and services can be found at:
http://bjsm.bmj.com/content/39/7/448

These include:

References
This article cites 30 articles, 12 of which you can access for free at:
http://bjsm.bmj.com/content/39/7/448#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/