Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound

P S Yung, Y M Lai, P Y Tung, H T Tsui, C K Wong, V W Y Hung, L Qin

Objective: This study was designed to investigate bone properties using heel quantitative ultrasound (QUS) in young adults participating in various sports.

Methods: A cross sectional study was performed on Chinese male students (n = 55), aged 18–22 years. Subjects with previous fractures or suffering from any diseases known to affect bone metabolism or taking any medication with such an effect, were not included. The subjects were categorised according to their main sporting activities, including soccer (n = 15) (a high impact, weight bearing exercise), dancing (n = 10) (a low impact, weight bearing exercise), and swimming (n = 15) (non-weight bearing exercise). A sedentary group acted as controls (n = 15). A reproducibility study of the velocity of sound (VOS) and the broadband ultrasound attenuation (BUA) measurement was performed and analysed using the intraclass correlation coefficient (ICC).

Results: There was good intra-investigator and inter-investigator agreement (ICC > 0.8; p < 0.05) in the measurement of BUA and VOS. No significant differences in BUA and VOS (p > 0.05) were found between the dominant and non-dominant heel. Soccer players (137 ± 4.3 dB/MHz; 1575 ± 56 m/s; 544.1 ± 48.4) and dancers (134.6 ± 3.7 dB/MHz; 1538 ± 46 m/s; 503.0 ± 37.0) had significantly higher BUA, VOS, and stiffness index (SI) scores (p < 0.05), respectively, than swimmers (124.1 ± 5.1 dB/MHz; 1495 ± 42 m/s; 423.3 ± 46.9) and the sedentary control group (119.9 ± 6.1 dB/MHz; 1452 ± 41 m/s; 369.9 ± 46.4). A trend of a significant linear increase with the weight bearing and high impact exercise was revealed in all QUS parameters (p < 0.05).

Conclusion: This cross sectional study indicated that regular participation in weight bearing exercise in young people might be beneficial for accruing peak bone mass and optimising bone structure.

Bone structure and mechanical properties in osteoporosis. The calcaneus is the most common measurement site due to its accessibility, suitable shape, and high trabecular content. A recent study has shown that physical activity is associated with QUS measurements on the heel independently of BMD.

The aim of the present study was to use heel QUS to elaborate potential differences in the beneficial effects of weight bearing and non-weight bearing exercises in college athletes.

METHODS

Subjects

Fifty five healthy Chinese male students aged 18–22 were recruited from a local university. They were categorised by the main sporting activities in which they engaged, from high to low impact weight bearing and non-weight bearing exercises: soccer (n = 15), dancing (n = 10), swimming (n = 15), and no exercise (the sedentary control group; n = 15). The criteria for those that exercised were that they had to have had at least 2 years of training in the above-mentioned supervised exercises, not less than twice a week, for 2 h at a time. The study protocol was approved by the Departmental Research Committee, Department of Optometry and Radiography, The Hong Kong Polytechnic University. The written informed consent of all the participants was obtained before the study was carried out.

Abbreviations: BMD, bone mineral density; BMI, body mass index; BUA, broadband ultrasound attenuation; DXA, dual energy x-ray absorptiometry; GRF, ground reaction forces; ICC, intraclass correlation coefficient; MLD, maximum longitudinal diameter; MTD, maximum transverse diameter; QUS, quantitative ultrasound; SD, standard deviation; SI, stiffness index; VOS, velocity of sound
Anthropometry

Body weight and body height of the participants were recorded and body mass index (BMI) was calculated. The maximum transverse and longitudinal diameters (MTD and MLD) of their feet were also recorded.

Ultrasound measurement

The bilateral calcanei of each subject were measured using a heel ultrasound densitometer (Paris, Norland Medical System, Fort Atkinson, WI, USA). Quality assurance was performed using a dedicated phantom (supplied by the manufacturer) before the first measurement of the day. The dominant foot was determined by the foot used to kick a ball. Ultrasound gel was applied as a coupling medium to ensure good contact. The velocity of sound (VOS) and broadband ultrasound attenuation (BUA) were measured. A stiffness index (SI) was then derived from both the VOS and BUA, where, as defined by the manufacturer, SI = (0.8471 × VOS)/(4.1034 × BUA) − 1352.2. Each subject had three measurements without repositioning to calculate mean value.

Statistical analysis

One way ANOVA was used to test if there was a difference among the groups in terms of anthropometric parameters, calcium intake, and QUS parameters. A Tukey post hoc test was employed to determine the pairwise difference if the one way ANOVA was significant. A paired t test was used to examine the significance of the differences in the QUS parameters between the dominant and non-dominant heels.

The level of significance was set at p<0.05. In the intraclass correlation coefficient (ICC) measurement, a two way ANOVA mixed test model with 95% confidence intervals (CI) and absolute agreement was employed, with a test value of 0.8, to calculate the intra-investigator and inter-investigator variability. All the statistical analyses were performed using SPSS 10.0 for Windows. The results are expressed as mean ± standard deviation (SD), unless stated otherwise.

RESULTS

Subject characteristics

There was no significant difference (p>0.05) in age, body weight, body height, BMI, calcium intake, MTD, and MLD among all the groups (table 1).

Reproducibility of QUS measurement

Agreement between the investigators who measured the same QUS parameters on three occasions in 15 subjects with repositioning, was assessed by ICC. Intra-investigator ICC values were 0.949 (95% CI: 0.921–0.968), 0.866 (95% CI: 0.795–0.916), and 0.954 (95% CI: 0.930–0.971) for VOS, BUA, and SI, respectively. Inter-investigator ICC values were 0.944 (95% CI: 0.878–0.979), 0.953 (95% CI: 0.858–0.975), and 0.949 (95% CI: 0.889–0.981) for VOS, BUA and SI, respectively. All ICC values were compared with the test value, 0.8 (p<0.05).

Site specificity of exercise effect: dominant and non-dominant foot

No significant differences were found in VOS, BUA, and SI in the QUS measurements of the dominant and non-dominant sides in each study group (p>0.05) (table 2).

Comparison of QUS parameters among exercising and non-exercising control groups

One way ANOVA showed that there were significant differences (p<0.001) in VOS, BUA, and SI among the four groups in both feet (table 2). The BUA of both the dominant and non-dominant sites are shown in fig 1. The mean BUA value at the dominant site of the soccer group was 14.3% (p<0.001) and 5.3% (p<0.001) higher than the value for the control and swimming groups, respectively. The mean BUA of the dancing group was 12.2% (p<0.001) and 8.5% (p<0.001) higher than that of the control and swimming groups, respectively. The mean BUA value obtained from the non-dominant site of the soccer group was 16.6% (p<0.001) and 10.4% (p<0.001) higher than that of the control and swimming groups, respectively. The mean BUA obtained from the non-dominant site of the dancing group was 14.4% (p<0.001) and 8.3% (p<0.001) higher than for the control and swimming groups, respectively. The mean BUA of the swimming group was 5.7% (p<0.01) higher than that of the

Table 1 Subject characteristics (mean ± SD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (n = 15)</th>
<th>Swimming (n = 15)</th>
<th>Dancing (n = 10)</th>
<th>Soccer (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21.3 ± 1.2</td>
<td>20.9 ± 1.3</td>
<td>20.6 ± 0.7</td>
<td>21.2 ± 1.7</td>
</tr>
<tr>
<td>Body height (cm)</td>
<td>174.4 ± 5.4</td>
<td>175.6 ± 6.1</td>
<td>172.3 ± 5.2</td>
<td>175.3 ± 7.6</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>64.8 ± 8.3</td>
<td>67.5 ± 7.8</td>
<td>65.1 ± 10.7</td>
<td>67.8 ± 5.9</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.3 ± 2.3</td>
<td>21.8 ± 1.3</td>
<td>21.9 ± 3.2</td>
<td>22.0 ± 1.1</td>
</tr>
<tr>
<td>Calcium intake (mg/day)</td>
<td>274.3 ± 190.7</td>
<td>376.2 ± 290.7</td>
<td>302.9 ± 169.5</td>
<td>225.7 ± 148.1</td>
</tr>
<tr>
<td>Frequency (times/week)</td>
<td>3.5 ± 3.1</td>
<td>3.5 ± 3.1</td>
<td>3.9 ± 1.2</td>
<td>2.4 ± 1.0</td>
</tr>
<tr>
<td>Duration (h/time)</td>
<td>–</td>
<td>1.7 ± 0.5</td>
<td>3.6 ± 0.5</td>
<td>2.5 ± 0.8</td>
</tr>
<tr>
<td>MTD (dominant, cm)</td>
<td>9.4 ± 0.6</td>
<td>9.7 ± 0.6</td>
<td>9.4 ± 0.6</td>
<td>9.6 ± 0.6</td>
</tr>
<tr>
<td>MTD (non-dominant, cm)</td>
<td>9.2 ± 0.5</td>
<td>9.4 ± 0.5</td>
<td>9.3 ± 0.6</td>
<td>9.5 ± 0.5</td>
</tr>
<tr>
<td>MLD (dominant, cm)</td>
<td>25.3 ± 1.2</td>
<td>25.2 ± 1.2</td>
<td>24.9 ± 1.3</td>
<td>25.2 ± 1.6</td>
</tr>
<tr>
<td>MLD (non-dominant, cm)</td>
<td>25 ± 1.4</td>
<td>25.4 ± 1.1</td>
<td>24.8 ± 1.4</td>
<td>24.9 ± 1.5</td>
</tr>
</tbody>
</table>

BMI, body mass index; MLD, maximum longitudinal diameter; MTD, maximum transverse diameter. There were no statistically significant differences among the four groups, so no adjustments were made for body weight and height, etc.
Effects of weight bearing and non-weight bearing exercises

Table 2 Result of QUS measurements

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Swimming</th>
<th>Dancing</th>
<th>Soccer</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOS (m/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominant</td>
<td>1452 ± 41†</td>
<td>1495 ± 42†</td>
<td>1538 ± 46*</td>
<td>1575 ± 56†</td>
</tr>
<tr>
<td>Non-dominant</td>
<td>1345 ± 40‡</td>
<td>1503 ± 27‡</td>
<td>1521 ± 52‡</td>
<td>1579 ± 60‡</td>
</tr>
<tr>
<td>BUA (dB/MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominant</td>
<td>119.9 ± 6.1‡</td>
<td>124.1 ± 5.1‡</td>
<td>134.6 ± 3.7†</td>
<td>137.0 ± 4.3†</td>
</tr>
<tr>
<td>Non-dominant</td>
<td>118.1 ± 6.2‡</td>
<td>124.8 ± 4.1‡</td>
<td>135.1 ± 5.1†</td>
<td>137.8 ± 5.3†</td>
</tr>
<tr>
<td>SI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominant</td>
<td>369.9 ± 46.4†‡</td>
<td>423.3 ± 46.9†‡</td>
<td>503.0 ± 37.0†‡</td>
<td>544.1 ± 48.4†‡</td>
</tr>
<tr>
<td>Non-dominant</td>
<td>364.2 ± 54.2†‡</td>
<td>453.5 ± 23.8†‡</td>
<td>490.7 ± 55.3†‡</td>
<td>551.3 ± 63.4†‡</td>
</tr>
</tbody>
</table>

BUA, broadband ultrasound attenuation; SI, stiffness index; VOS, velocity of sound.
*Significantly different from the control group; †significantly different from the swimming group; ‡significantly different from the dancing group.

In general, there was a significant ascending trend in the BUA of both sites in the following order of groups: control, swimming, dancing, and soccer (p<0.001). The result of the VOS measurements of both the dominant and non-dominant sites is shown in fig 2. The mean VOS value at the dominant site of the soccer group was 8.5% (p<0.001) and 5.4% (p<0.001) higher than the value of the control and swimming groups, respectively. The mean VOS of the dancing group was 5.9% (p<0.001) higher than that of the control group. The mean VOS value obtained from the non-dominant site of the soccer group was 8.6% (p<0.001), 5.1% (p<0.001), and 3.8% (p>0.05) higher than that of the control group, swimming group, and dancing group, respectively. The value of the dancing group was 4.6% (p<0.05) higher than that of the control group; and that of the swimming group was 3.4% (p<0.05) higher than that of the control group. In general, there was a significant ascending trend in the VOS of both sites in the following order of groups: control, swimming, dancing, and soccer (p<0.001).

The SI values of both the dominant and non-dominant sites are shown in fig 3. For the dominant site, the mean SI value of the control group was 47% (p<0.001) and 28.5% (p<0.001) higher than that of the control and swimming groups, respectively. The mean SI of the dancing group was 36.0% (p<0.001) and 18.8% (p<0.001) higher than that of the control and swimming groups, respectively. The mean SI of the swimming group was 14.4% (p<0.05) higher than that of the control group. For the non-dominant site, the mean SI value of the control group was 51.4% (p<0.001), 27.2% (p<0.001), and 14.8% (p<0.05) higher than that of the control, swimming, and dancing groups, respectively. The mean SI of the dancing group was 34.7% (p<0.001) and 13.2% (p<0.05) higher than that of the control and swimming groups, respectively. The mean SI of the swimming group was 5.7% (p<0.05) higher than that of the control group. In general, there was a significant ascending trend of SI in both sites in the following order of groups: control, swimming, dancing, and soccer (p<0.001).

DISCUSSION

The main purpose of this study is to demonstrate the osteogenic effect of different exercise modes using calcaneal QUS. In the present study, all the exercise groups have significantly higher QUS parameters for bilateral calcanei than the control group. Moreover, significantly higher QUS parameters were measured in exercises with a greater weight bearing loading on the calcaneus. This demonstrates that exercise has a positive effect on bone status and that such a positive effect was increased by the higher impact of weight bearing loading.

Many previous studies have demonstrated an osteogenic effect of high impact and weight bearing exercise on BMD using DXA. However, the latter densitometric measurement did not provide information on bone structure and mechanical properties. A previous study using DXA and QUS measurement by Lehtonen-Veromaa et al demonstrated that both femoral neck BMD and heel QUS parameters increased in the following order: control, runners, and gymnasts. These results concur with the present study in that the athletes generally had better bone ultrasonic properties than
Frost,27 who stated that exercise has a combined effect on the relationship between loading magnitude and bone can be dominant extremities of the subject groups.24 The level of impact has been identified, in classified as low, moderate, and high impact exercise,4 if a load is imposed, the bone will accommodate remodelling. Mechanical loading is also beneficial to bone increased by modelling and the added bone is retained by bone modelling and remodelling, in that bone mass is not shown in this study. As regards biomechanics, the site specificity between the dominant and non-dominant foot3.4%) and BUA (3.5–5.6%) in their bilateral calcanei than the present study is inconsistent with those previous studies. We found that the group of swimmers had higher VOS (3.0–3.4%) and BUA (3.5–5.6%) in their bilateral calcanei than the sedentary controls. Similar to the present study, Falk et al31 also found a higher tibial VOS in a group of swimmers than the age and gender matched sedentary controls and, in particular, that higher impact loading exercises are more beneficial to bones.

In humans, the main stresses applied at the level of the calcaneus are ground reaction forces (GRF) as the heel strikes during locomotion.8 Based on the GRF, swimming (GRF<1×body weight), dancing (GRF between 1 and 4×body weight), and soccer (GRF>4×body weight) can be classified as low, moderate, and high impact exercise, respectively.24 The level of impact has been identified, in both animal and human studies, as an important determinant of the skeleton’s adaptive response to mechanical loading. More osteogenesis was found when bones were subjected to progressively greater magnitudes of strain through artificial loading in animal experiments.25 An in vivo human study also showed a significantly high correlation between level of activity and QUS parameters.26 The relationship between loading magnitude and bone can be explained by the bone mechanostat theory proposed by Frost,27 who stated that exercise has a combined effect on bone modelling and remodelling, in that bone mass is increased by remodelling and the added bone is retained by remodelling. Mechanical loading is also beneficial to bone structure. If a load is imposed, the bone will accommodate and undergo an alteration in mass, external geometry, and internal micro-architecture.28

Previous studies indicated the existence of a site specificity effect in volleyball players and squash players.29 30 However, site specificity between the dominant and non-dominant foot is not shown in this study. As regards biomechanics, the physical activities entailed in swimming and dancing may exert similar strains on both legs.31 For soccer players, the supporting leg on the ground during kicking withstands high strains that have comparable loading to the kicking leg.32 Most previous studies using DXA found that swimming does not affect the acquisition of bone minerals.29 31 However, the present study is inconsistent with those previous studies. We found that the group of swimmers had higher VOS (3.0–3.4%) and BUA (3.5–5.6%) in their bilateral calcanei than the sedentary controls. Similar to the present study, Falk et al31 also found a higher tibial VOS in a group of swimmers than in a control group. They suggested that swimming may affect bone properties other than density, such as elasticity and microstructure, due to the effect of the straining of muscles during swimming, which are only detectable in QUS but not in DXA. They showed that although weight bearing may produce strain on the bone, muscle contractions may also have osteogenic effects.33 34 A study on rats also found that swimming had favourable effects on bone structure, turnover, and strength.35 However, this view is not widely supported by the other previous studies as the difference may be due to the bias of a cross sectional study.

Apart from physical exercise, bone status has been shown to be significantly associated with age, BMI, calcium intake, foot dimensions, and site specificity. These confounding variables on QUS measurement, however, were matched among the groups in the present study. There are many random variations that may affect the reliability of calcaneal QUS measurement, including equipment drift, heel core temperature, heel positioning in the ultrasonic beam, and the properties of the surrounding soft tissue and its thickness.36 A recent study by our group on the short term coefficient of variation for the QUS densitometer was 2.88% for BUA and 1.70% for VOS.37 In order to measure the reproducibility of QUS in the present study, ICC was used to investigate intra-investigator and inter-investigator agreement.37 The results of our QUS measurement were reliable, as we validated the intra-investigator and inter-investigator variability of the QUS parameters, with ICC significantly greater than 0.8 for the three QUS measurement parameters. A reliability coefficient of 0.8 is an acceptable level, indicating good intra-investigator and inter-investigator agreement.38 Thus, the comparative study of QUS parameters among the study groups as regards exercise effect could be well controlled. Evaluation of bone status using QUS has added value compared to DXA. The BUA parameter is related to the bone structure, whereas the VOS and SI values are correlated to bone density and its elasticity. Therefore, QUS allows examination not only of bone density, but also the biomechanical properties of bone, such as the size and structural changes of the bone in response to exercise. The major limitation of this cross sectional design is the potential bias of self selection in sampling. Prospective studies are desirable to elaborate how radiation-free QUS is useful in monitoring the beneficial effects of various modes of exercises on the properties of bone.

In conclusion, all QUS parameters were higher in exercise groups compared with the control group. There was a trend towards better QUS parameters in high impact exercise. These findings support the importance of high impact, weight...
bearing exercise at a young age in maximising peak bone mass with better mechanical strength. Our findings suggest that such exercises should be promoted among children to maximise and optimise their bone mass and quality and, hence, prevent osteoporosis in later life.

ACKNOWLEDGEMENTS
We would like to thank the Physical Education Section, Student Affairs Office, The Hong Kong Polytechnic University for support for this study.

Authors’ affiliations
P S Tung, Y M Lai, P Y Tung, H T Tsui, C K Wong, Department of Radiology and Radiography, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
V W Y Hung, L Qin, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Competing interests: none declared

REFERENCES
21 Ng YFG, Manifold HE. Relationship of kinetic demands of athletic training and knee joint laxity. Phys Ther Sport 2001;2:66–70.

www.bjsportmed.com

Downloaded from http://bjsm.bmj.com/ on June 20, 2017 - Published by group.bmj.com
Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound

P S Yung, Y M Lai, P Y Tung, H T Tsui, C K Wong, V W Y Hung and L Qin

doi: 10.1136/bjsm.2004.014621

Updated information and services can be found at:
http://bjsm.bmj.com/content/39/8/547

These include:

References
This article cites 32 articles, 2 of which you can access for free at:
http://bjsm.bmj.com/content/39/8/547#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Football (soccer) (227)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/