The relationship of femoral neck shaft angle and adiposity to greater trochanteric pain syndrome in women. A case control morphology and anthropometric study

Fearon AM,1,2 Stephens S,2 Cook JL,3 Smith PN,1,2 Neeman T,4 Cormick W,5 Scarvell JM2

ABSTRACT

Objective To evaluate if pelvic or hip width predisposed women to developing greater trochanteric pain syndrome (GTPS).

Design Prospective case control study.

Participants Four groups were included in the study: those gluteal tendon reconstructions (n=31, GTR), those with conservatively managed GTPS (n=29), those with hip osteoarthritis (n=20, OA) and 22 asymptomatic participants (ASC).

Methods Anterior-posterior pelvic x-rays were evaluated for femoral neck shaft angle; acetabular index, and width at the lateral acetabulum, and the superior and lateral aspects of the greater trochanter. Body mass index, and waist, hip and greater trochanter girth were measured. Data were analysed using a one-way analysis of variance (ANOVA; posthoc Scheffe analysis), then multivariate analysis.

Results The GTR group had a lower femoral neck shaft angle than the other groups (p=0.007). The OR (95% CI) of having a neck shaft angle of less than 134° relative to the ASC group: GTR=3.33 (1.26 to 8.85); GTPS=1.4 (0.52 to 3.75); OA=0.85 (0.28 to 2.61). The OR of GTR relative to GTPS was 2.4 (1.01 to 5.6). No group difference was found for acetabular or greater trochanter width. Greater trochanter girth produced the only anthropometric group difference (mean (95% CI) in cm: GTR=103.8 (100.3 to 107.3); GTPS=103.9 (100.2 to 111.6); OA=100.3 (97.7 to 103.5); ASC=99.1 (94.7 to 103.5), ANOVA; p=0.036). Multivariate analysis confirmed adiposity is associated with GTPS.

Conclusion A lower neck shaft angle is a risk factor for, and adiposity is associated with, GTPS in women.

INTRODUCTION

Greater trochanteric pain syndrome (GTPS) is thought to be a degenerative condition of the gluteal tendons and bursa for which few risk factors have been identified. Tendinopathies occur in both sporting and sedentary populations indicating a multifactorial aetiology. These factors include intrinsic and extrinsic risk factors. Identifying risk factors for GTPS should aid in understanding the aetiology of, and direct treatment for, GTPS.

Intrinsic risk factors previously identified for tendinopathies such as patellar and Achilles tendinopathy include genetic and biomechanical factors. Intrinsic factors associated with GTPS are sex and age, with older women at greater risk of developing GTPS. Other possible intrinsic factors are adiposity and biomechanics. Elevated adiposity has been proposed as an under recognised risk factor for all tendinopathies suggesting a systemic mechanism is involved rather than mechanical overload. Peripheral adiposity, (gynoid distribution), appears to be a risk factor for developing tendinopathy in women. To date, the level of adiposity in GTPS has only been reported in terms of body mass index (BMI), with values ranging from 22.1 kgm⁻² to 27.3 kgm⁻². BMI measures the relationship between height and weight but does not indicate fat distribution, a key factor in determining the systemic effects of increased adiposity. As there is some evidence to suggest increased adiposity is a risk factor for developing tendinopathy in women, the relationship of adiposity and GTPS deserves further investigation.

Other intrinsic risk factors for developing GTPS that have been reported in review papers and textbooks (in runners) include leg length discrepancy and pelvic width. However, leg length discrepancy has not been found to be associated with GTPS in people with primary GTPS or in people who develop GTPS post-total hip arthroplasty. In addition, leg length discrepancy has been reported to be lower in those with GTPS than the population prevalence. The evidence of pelvic width as a risk factor is limited to level V evidence, with the authors failing to differentiate between the pelvic, hip or greater trochanter width. As GTPS is more common in women, and women have wider pelvises than men, the research question of whether a wider pelvis is an intrinsic risk factor for GTPS should be addressed.

Pathological compression of a tendon is thought to contribute to the development of tendinopathy. The angle that the tendon approaches the enthesis and the size of the bony pulley before the tendon insertion affects the strain and compression forces on the tendon. In the case of the gluteus medius and minimus tendons, this angle is in part determined by the neck shaft angle of the femur. In addition, greater hip width at the level of the greater trochanters would result in the gluteal tendons wrapping over a greater proportion of the greater trochanter leading to an increased area of compression. Therefore, the degree of coxa vara and the pelvic width at the level of the...
greater trochanter may be a predisposing factor for developing GTPS.24–26

The aims of this study were to evaluate if the width of the pelvis or femoral neck shaft angle constituted independent risk factors, or if in combination of these constituted a risk factor for developing GTPS. A further aim was to determine if increased adiposity and the distribution pattern of the adiposity was associated with GTPS.

PARTICIPANTS AND METHODS

Participants

Four groups of participants were recruited; those with GTPS, gluteal tendon reconstruction (GTR; surgical management of GTPS), hip osteoarthritis (OA) and an age and sex matched (to the GTPS group) control group (ASC). Participants were recruited through private healthcare providers and viva voce. All participants had to be older than 18 years of age and able to communicate in English. Participants were excluded if they had the following: systemic inflammatory disease, for example, rheumatoid arthritis; lumbar spine nerve root signs; a history of lumbar spine or ipsilateral hip joint surgery; osteogenic disease, for example, Paget’s disease, or neoplastic disease. Due to sex-linked pelvic morphology, men were excluded from this study.23

Hip OA participants were diagnosed according to Altman 199128 and were scheduled for hip arthroplasty surgery. Diagnostic criteria for GTPS was a history of lateral hip pain,22,29 pain on palpation of the greater trochanter and at least one of lateral hip pain with lying on the ipsilateral side, weight bearing activities or sitting.29,30 In addition to the above criteria for GTPS, participants in the GTR group had evidence of tendon tearing on MRI or ultrasound imaging, with symptoms refractory to ultrasound-guided corticosteroid injection and physiotherapy. Control participants had to be asymptomatic for hip joint and tendon pathology. Participants in the GTPS, GTR and ASC groups had no evidence of hip OA.28 Participants in the ASC and OA groups had no past or current history of GTPS. Clinical status was confirmed by examination using the above criteria (AF). Hip joint status was confirmed via x-ray or MRI.

Ethical approval for this study was provided by the Australian National University, ACT Health, Calvary HealthCare and Deakin University human research ethics committees. All participants provided informed consent.

METHODS

The study was undertaken between February 2004 and November 2009. Two hundred and twenty potential participants were contacted. Within the GTPS group, 40 people were contacted, 10 were excluded, and one withdrew (n=29). Within the GTR group, 35 potential participants were contacted, and four were excluded (n=31). Eleven were assessed preoperatively; the remainder were assessed an average of 22 months postoperatively. Details of the latter group have been previously reported.3 Within the ASC group, 40 people were contacted, 18 were excluded (n=22). Within the OA group, 126 people were contacted, 28 declined, 73 were excluded (n=20).

Participants had a standardised anterior to posterior x-ray in supine, centred on the pubis. The x-rays were digitised and deidentified. Pelvic morphology was assessed by measures of lateral pelvic dimensions and the acetabular index using Intellicad 2000 for Microsoft windows (IntelliCAD technology consortium, Visio Corporation). Lateral measures were taken from the midline – a perpendicular line that bisected the distance between the distal border of the acetabular tear drops (ML) to the anterior inferior iliac spine (AIIS) (A); to the lateral rim of the acetabulum (B); to the most superior aspect of the greater trochanter (C); and to the most lateral aspect of the greater trochanter (D) (figure 1). Ratio distances in relation to A were calculated for linear measures. The acetabular index was measured according to Sharp’s method31 (figure 1). The femoral neck shaft angle was measured using a six-inch goniometer (http://www.physiosupplies.com.au 15 May 2011) on the digital x-ray, aligning the goniometer arms along the shaft and neck of the femur. Measurements were undertaken by one of two assessors (AF, SS). To test the reliability of measurements, each rater measured an identical set of 20 deidentified x-rays twice, 1 week apart.

Physical examination

Ninety nine participants had standard waist and hip girth measurements taken (AF). In standing, using a non-stretch tape measure, the waist measure was taken on light expiration at the narrowest point,32 (or the mid point between the ribs and the iliac crest when the narrowest point was not identifiable). The hip measure was taken at the largest elevation about the buttocks;32,33 and at the greater trochanter, across both greater trochanters with the tape measure parallel to the ground. Height and weight were measured with the participants in light clothing and no shoes. Height was measured using a wall-mounted stadiometer (Menton Education Centre, Moorabbin, http://mentone-educational.com.au). Weight was measured on flat medical quality scales (Hills scale service, Baulkham Hills, NSW. http://www.hillscales.com.au).

Data analysis

Statistical analyses were performed with Stata IC 10.1 (Statacorp, USA). Reliability was assessed using an intraclass correlation co-efficient (ICC). Between group, differences were
compared using a one-way analysis of variance (ANOVA) with posthoc Scheffe analysis. Linear models were used to test group differences between the affected and unaffected lower limbs. In cases of bilateral symptoms, the more symptomatic lower limb was designated the affected side. Analysis by side led to the same conclusions regarding group differences, thus the mean neck of femur neck shaft angle and acetabular index from both sides is reported. Between group differences were calculated for the neck shaft angle and acetabular index using a linear mixed-model analysis. p Values of <0.05 were considered significant. Using a posthoc cut off of 134° for neck shaft angle, logistic regression was used to assess group differences in the prevalence of a neck angle less than 134°, OR (95% CI) relative to the asymptomatic group are reported. A canonical linear discriminant analysis (CDA) was undertaken to explore group differences in relation to multiple variables. All variables were included in the CDA analysis.

RESULTS

Participants

The OA participants were the oldest cohort, with a mean (SD) age of 62 (13.3) years. In contrast, the mean ages for the ASC, GTPS and GTR groups were 51.6, 52.2 and 55.7 years, respectively (table 1).

<table>
<thead>
<tr>
<th>Measure</th>
<th>ASC (n=22)</th>
<th>GTPS (n=29)</th>
<th>GTR (n=31)</th>
<th>OA (n=20)</th>
<th>ANOVA (p values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years): mean (SD)*</td>
<td>51.6 (10.19)</td>
<td>52.2 (12.85)</td>
<td>55.7 (9.13)</td>
<td>62.0 (13.28)</td>
<td></td>
</tr>
<tr>
<td>Duration of symptoms: mean (SD, months)†</td>
<td>0</td>
<td>61.9 (60.2)</td>
<td>44.4 (37.4)</td>
<td>40.3 (43.9)</td>
<td></td>
</tr>
<tr>
<td>X-ray reports</td>
<td>20/22</td>
<td>28/29</td>
<td>31/31</td>
<td>20/20</td>
<td></td>
</tr>
<tr>
<td>X-ray images‡</td>
<td>20/22</td>
<td>28/29</td>
<td>21/31</td>
<td>20/20</td>
<td></td>
</tr>
<tr>
<td>Anthropometric data</td>
<td>22/22</td>
<td>28/29</td>
<td>30/31</td>
<td>20/20</td>
<td></td>
</tr>
</tbody>
</table>

ACS, asymptomatic control group; GTPS, greater trochanteric pain syndrome group; GTR, gluteal tendon reconstruction group; OA, hip osteoarthritis group.

Table 2

Bony morphology measures of the pelvis. Acetabular index, neck shaft angle, pelvic and greater trochanter widths. Results by group (mean, 95% CI)

Table 2

Canonical discriminant analysis

Using canonical discriminant analysis (CDA), the measures of adiposity and increased width at the superior greater trochanter were found to be relevant in discriminating across the four groups. The CDA had one out of three dimensions that was statistically significant (p=0.046, 0.458 and 0.782 respectively; table S3). The statistically significant dimension had positive means for GTR (0.18) and GTPS (0.82), and negative means for OA (−0.66) and ASC (−0.68) (table S4). This dimension (dimension 1, table 4) represents gynoid adiposity, and width at the level of the superior GT, but not the lateral GT (table 4). The analysis confirms that overall adiposity, with a gynoid distribution is a factor in discriminating between the groups.

Table 3

Demographic data and x-ray and anthropometric data availability by group

Inter and intraterest reliability

Good to excellent intra and interterester reliability was demonstrated for all imaging measures, greater than 0.70 being considered good.34-35 The intrarater ICC ranged from (95% CI) of 0.72 (0.62 to 0.80) to 1.0 (1.0 to 1.0) and the interrater ICC range (95% CI) of 0.77 (0.72 to 0.82) to 0.99 (0.98 to 1.0) (table S1, table S2).

Bony morphology

The neck shaft angle was lower in the GTR participants than in any other group (table 2). No difference was demonstrated between the GTPS, OA or ASC groups. The OR (95% CI) of having a neck shaft angle of less than 134°, relative to the ASC group was highest for the GTR group at 3.33 (1.26 to 8.85); 1.4 (0.52 to 3.75) for the GTPS; and 0.85 (0.28 to 2.61) for the OA group. The OR of GTR relative to GTPS was 2.4 (1.01 to 5.6). No group difference was found for the acetabular index, any measure of pelvic width, or the distance from the superior greater trochanter to the lateral greater trochanter (table 2).

Anthropometric measurements

There was statistically significant difference across the groups in greater trochanter girth measurements (ANOVA: p=0.036, table 3). GTPS group had the highest, and the ASC group had the lowest, greater trochanter girth measurements. However, posthoc analysis failed to demonstrate pair-wise differences. There was a trend towards group differences for hip girth measurement, with the GTPS group having the highest mean girth (ANOVA: p=0.090, table 3). There were no group differences for waist girth and BMI measurements (table 5).

Canonical discriminant analysis

Using canonical discriminant analysis (CDA), the measures of adiposity and increased width at the superior trochanter were found to be relevant in discriminating across the four groups. The CDA had one out of three dimensions that was statistically significant (p=0.046, 0.458 and 0.782 respectively; table S3). The statistically significant dimension had positive means for GTR (0.18) and GTPS (0.82), and negative means for OA (−0.66) and ASC (−0.68) (table S4). This dimension (dimension 1, table 4) represents gynoid adiposity, and width at the level of the superior GT, but not the lateral GT (table 4). The analysis confirms that overall adiposity, with a gynoid distribution is a factor in discriminating between the four groups. The CDA had one out of three dimensions that was statistically significant (p=0.046, 0.458 and 0.782 respectively; table S3). The statistically significant dimension had positive means for GTR (0.18) and GTPS (0.82), and negative means for OA (−0.66) and ASC (−0.68) (table S4). This dimension (dimension 1, table 4) represents gynoid adiposity, and width at the level of the superior GT, but not the lateral GT (table 4). The analysis confirms that overall adiposity, with a gynoid distribution is a factor in discriminating between the four groups.
the tendon against the greater trochanter, lateral pressure from gluteofemoral adiposity and width of the superior GT. Width at the GT are all positive with hip girth, superior GT girth and BMI loading the BMI, body mass index; GT, greater trochanter; NoF, neck of femur.

Superior to lateral GT (C:D) −0.28
Lateral GT width (A:D)) 0.14
Superior GT width (A:C) 0.34
Acetabulum width (A:B) 0.08
NoF angle −0.19
Waist girth to GT girth −0.01
Waist girth to hip girth −0.10
GT girth 0.50
Hip girth 0.53
Waist girth 0.28

Adiposity measures
BMI 0.45
Waist girth 0.28
Hip girth 0.53
GT girth 0.50
Waist girth to hip girth −0.10
Waist girth to GT girth −0.01
Bony measures
NoF angle −0.19
Acetabulum width (A:B) 0.08
Superior GT width (A:C) 0.34
Lateral GT width (A:D) 0.14
Superior to lateral GT (C:D) −0.28

BMI, body mass index; GT, greater trochanter; NoF, neck of femur.

Table 4 Canonical (discriminant) loading

<table>
<thead>
<tr>
<th>Measurement</th>
<th>ASC (n=22)</th>
<th>GTPS (n=27)</th>
<th>GTR (n=30)</th>
<th>OA (n=20)</th>
<th>ANOVA (p values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m^2)</td>
<td>25.0 (23.5 to 26.5)</td>
<td>27.5 (25.4 to 29.6)</td>
<td>26.8 (25.2 to 28.4)</td>
<td>25.3 (23.5 to 27.1)</td>
<td>0.154</td>
</tr>
<tr>
<td>Waist girth (cm)</td>
<td>83.0 (78.9 to 87.1)</td>
<td>88.4 (82.9 to 93.9)</td>
<td>84.6 (79.6 to 89.6)</td>
<td>84.0 (79.0 to 89.0)</td>
<td>0.420</td>
</tr>
<tr>
<td>Hip girth (cm)</td>
<td>102.8 (99.4 to 106.2)</td>
<td>109.1 (104.9 to 113.2)</td>
<td>105.9 (100.0 to 109.2)</td>
<td>104.2 (100.0 to 108.4)</td>
<td>0.090</td>
</tr>
<tr>
<td>GT girth (cm GTg)</td>
<td>99.1 (94.7 to 103.5)</td>
<td>105.9 (100.2 to 111.6)</td>
<td>103.8 (100.3 to 107.3)</td>
<td>100.3 (96.7 to 103.9)</td>
<td>0.036*</td>
</tr>
<tr>
<td>W:H</td>
<td>0.81 (0.793 to 0.837)</td>
<td>0.79 (0.753 to 0.827)</td>
<td>0.80 (0.764 to 0.836)</td>
<td>0.81 (0.781 to 0.839)</td>
<td>0.884</td>
</tr>
<tr>
<td>W:GT</td>
<td>0.85 (0.791 to 0.909)</td>
<td>0.84 (0.797 to 0.883)</td>
<td>0.82 (0.772 to 0.868)</td>
<td>0.84 (0.791 to 0.886)</td>
<td>0.855</td>
</tr>
</tbody>
</table>

ACG, asymptomatic control group; ANOVA, analysis of variance; BMI, body mass index; GTg, greater trochanter girth; GTPS, greater trochanteric pain syndrome group; GTR, gluteal tendon reconstruction group; H, hip girth; OA, hip osteoarthritis group; W, waist girth.

*Posthoc analysis showed a trend for the GTPS group to be larger about the greater trochanters than the ASC group, but pair wise analyses failed to demonstrate group differences, p = 0.079. None of the other measures approached significance.

The assessment of adiposity demonstrated that the women with GTPS and GTR had a trend towards larger girth measurements at the waist and hip, and were larger at the greater trochanter level. These trends support the previous findings that women with increased adiposity, particularly gynoid adiposity, are at risk of tendinopathy.11

The common assertion that women who develop GTPS have wider hips is supported by this study, albeit in an unexpected way. On univariate analysis, women with GTPS did not have a wider bony pelvis or hips than women without GTPS. Rather, in those women who went on to have surgery, the lower neck shaft angle combined with the increased gynoid adipose tissue results in the outward appearance of wider hips. Women with GTPS who did not go on to have surgery, and had a normal neck shaft angle also had higher levels of gynoid adiposity, thus would appear wider.

Higher levels of adiposity within the GTPS and GTR groups were confirmed by the canonical discriminant analysis. This analysis found that the GTPS and GTR groups had higher group means than either the ASC or OA groups on the dimension which reflects adiposity, with a higher influence of the gynoid than the central adiposity. Like Gaida et al12 who found gynoid adiposity had a stronger association with tendinopathy in women than central adiposity,12 our study found higher levels of gynoid adiposity in the GTPS and GTR groups than the other two groups – although pair-wise analysis failed to show group differences. As with Gaida et al, there was no difference between the groups with respect to BMI. BMI is known to be a simple but insensitive measure of adiposity.14 The results of this study, and those of Gaida et al12 suggest that in addition to BMI, measures of adiposity distribution should be reported in musculoskeletal studies.12 45

We note that gynoid adipocyte accumulation and tendinopathy are associated in women in general and GTPS in particular.11 We propose that there may be local adipokine and bioactive peptide activity that contributes to the development of tendinopathy.44
The mean neck shaft angle was larger for the entire population sample than has been previously reported (125° to 133°). Differences in the mean neck shaft angle could be due to method variations. In the current study, the assessors used similar methods as previously reported and demonstrated good to excellent inter and intratester reliability. This study was undertaken on actual patients as opposed to previous studies that were completed on x-rays of, or directly from, anatomical or cadaveric specimens (with only one paper reporting reliability). This suggests that measure of neck shaft angle taken from specimens may not translate to the live patient.

As neck shaft angle lowers with age, cadaveric specimens are likely to have lower neck shaft angles than the general population—a further difference may be that the cohort in this study of all female pelvises had a systematic bias for a lower neck shaft angle. A previous study noted that lower neck shaft angles are associated with higher levels of weight bearing. It is conceivable that the small sample is from a less active sample population than previous studies—which included measures from historic data. Regardless, people who underwent GTR have a lower neck shaft angle than the comparison groups (table 2).

The following limitations of this study are acknowledged. This sample population was relatively small and from one geographic location. Further research should address both these issues, thus determining a robust neck shaft angle cut off, or population-specific cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-specific cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut offs. A further limitation is the case-control design. The adiposity results would be stronger had a population-speciﬁc cut off.
The relationship of femoral neck shaft angle and adiposity to greater trochanteric pain syndrome in women. A case control morphology and anthropometric study

AM Fearon, S Stephens, JL Cook, PN Smith, T Neeman, W Cormick and JM Scarvell

doi: 10.1136/bjsports-2011-090744

Updated information and services can be found at: http://bjsm.bmj.com/content/46/12/888

These include:

Supplementary Material
Supplementary material can be found at: http://bjsm.bmj.com/content/suppl/2012/04/30/bjsports-2011-090744.DC1

References
This article cites 47 articles, 6 of which you can access for free at: http://bjsm.bmj.com/content/46/12/888#BIBL

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/3.0/ and http://creativecommons.org/licenses/by-nc/3.0/legalcode

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Open access (266)
- Statistics and research methods (51)
- Health education (481)
- Obesity (nutrition) (120)
- Obesity (public health) (120)
- Degenerative joint disease (239)
- Musculoskeletal syndromes (431)
- Osteoarthritis (117)

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/
Notes