Effect of ski geometry and standing height on kinetic energy: equipment designed to reduce risk of severe traumatic injuries in alpine downhill ski racing

Matthias Gilgien,1 Jörg Spörri,2 Josef Kröll,2 Erich Müller2

ABSTRACT

Background Injuries in downhill (DH) are often related to high speed and, therefore, to high energy and forces which are involved in injury situations. Yet to date, no study has investigated the effect of ski geometry and standing height on kinetic energy (EKIN) in DH. This knowledge would be essential to define appropriate equipment rules that have the potential to protect the athletes’ health.

Methods During a field experiment on an official World Cup DH course, 2 recently retired world class skiers skied on 5 different pairs of skis varying in width, length and standing height. Course characteristics, terrain and the skiers’ centre of mass position were captured by a differential Global Navigational Satellite System-based methodology. EKIN, speed, ski–snow friction force (Ff), ground reaction force (FGRF) and ski–snow friction coefficient (Coefff) were calculated and analysed in dependency of the used skis.

Results In the steep terrain, longer skis with reduced width and standing height significantly decreased average EKIN by ∼3%. Locally, even larger reductions of EKIN were observed (up to 7%). These local decreases in EKIN were mainly explainable by higher Ff. Moreover, Coefff differences seem of greater importance for explaining local Ff differences than the differences in FGRF.

Conclusions Knowing that increased speed and EKIN likely lead to increased forces in fall/crash situations, the observed equipment-induced reduction in EKIN can be considered a reasonable measure to improve athlete safety, even though the achieved preventative gains are rather small and limited to steep terrain.

INTRODUCTION

Alpine ski racing is known to be a sport with a high risk of sustaining severe injuries.1 2 Injury rates for World Cup (WC) athletes were found to differ among the competition disciplines, particularly when calculated as injuries per 1000 runs: they increased from slalom to giant slalom, super-G and downhill (DH) with the knee as the most frequently injured body part.1 However, if injury risk is normalised with risk exposure time and calculated as the number of injuries per time skiing, the disciplines giant slalom, super-G and DH can be considered to be equally dangerous but for different reasons.3

With respect to the injury causes, a recent study assessing the ski biomechanics in WC alpine skiing found that injuries in super-G and DH are most likely due to high speeds, jumps and higher workloads caused by long competition times.4 High speed is expected to shorten the preparation time necessary for the skier to adapt to jumps and demanding course sections.3 High speed is also expected to increase jump length and air time, resulting in an increased risk of falling.4 5 Furthermore, high speed and, therefore, high kinetic energy (EKIN=1/2×mass×speed2) are likely to increase the forces that occur at the impact in fall or crash situations.3 Consequently, reducing EKIN can be considered a potential prevention tool, particularly in super-G and DH.3

Thus far, it is known that course setting might be an effective preventative measure to control skier speed and EKIN in steep terrain in DH courses.5 6 In addition, equipment-related measures, namely different ski geometries and standing height (ie, distance from ski base to binding plate cover), might potentially reduce EKIN/speed, as was hypothesised by expert stakeholders of the WC ski racing community. Yet to date, scientific knowledge on DH is very limited,3-6 8-10 and no field study has assessed equipment-related, preventative measures in super-G and DH.

Therefore, this study aimed to investigate the effect of modifications in ski geometry (ski length, ski width) and standing height of DH skis on speed and EKIN while skiing a WC DH course.

METHODS

Measurement protocol and data collection

Two recently retired (10 months) male WC athletes (age: 34.5±4.5 years; height: 184±2 cm; weight: 98.5±1.5 kg) skied several runs on five different pairs of skis varying in width (W), length (L) and standing height (H) and length (L). For each skier, 4 runs per ski were considered for the data analysis (ie, a total of 40 runs). The test order of the skis was randomised and snow conditions were monitored. The reference ski (SKREF) was built according to the International Ski Federation (FIS) equipment rules being valid until Winter Season 2011/2012.9 10 The specifications of all other skis were defined by an expert group consisting of representatives of the Ski Racing Suppliers Association (SRS), FIS Race Directors and researchers who took into consideration the existing scientific knowledge and practical experience (table 1). All prototypes were constructed by one company under the guidance of SRS, strictly adhered to the predefined geometrical variables (table 1) and material composition.

The biomechanical field experiment was conducted on the lower part of the FIS WC DH course in Åre (Sweden), directly after a women’s WC DH race. The first section of the course was...
steep and turning (SectionSTEEP), the second section was flat and less turning (SectionFLAT; figure 1). The analysis for SectionSTEEP started at the first gate where skiers reached 19.9 m/s and ended at gate number 9. The analysis of SectionFLAT started at gate 11 and ended at gate 21.

Course setting and the snow surface geomorphology were captured using static differential global navigation satellite systems (dGNSS) and were reconstructed in a digital terrain model (DTM), as conducted in earlier studies. Each skier’s instantaneous three-dimensional position was captured by kinematic dGNSS (50 Hz), using GPS and the Russian (GLONASS) global navigation satellite systems, L1 and L2 signals, and was carried in a small backpack as described in detail in previous studies. The centre of mass (CoM) position of the skier was approximated using a virtual pendulum model, which was attached to the skier’s antenna position and the intersection of the pendulum with the snow surface DTM.

Postprocessing and parameter calculations

Course setting was characterised by gate distance and horizontal gate distance, using the definition of double gate turns in speed disciplines introduced in earlier studies. Each skier’s speed, turn radius and EKIN were derived from the CoM position (measurement-system accuracy: 0.1 m). Ground reaction force (FGRF) and ski–snow friction force (Ff) were calculated by the application of a kinetic model on the CoM position, the virtual pendulum model and the body extension (measurement-system accuracy: 63N for FGRF; 42N for Ff). The ski–snow friction coefficient (Coefff) was calculated as the coefficient of Ff and FGRF. To compare the time series data of speed, turn radius, EKIN, FGRF, Ff and Coefff, between runs, parameters were spatially normalised based on an alternative approach specifically dedicated to the characteristics of competitive alpine DH skiing (see online supplementary data).

Statistical analysis

The statistical analysis was conducted for skiers A and B and for SectionSTEEP and SectionFLAT separately. For each run of each skier and each ski, EKIN averages of the SectionSTEEP and SectionFLAT were calculated. Based on these single EKIN section averages, participant mean±SD values were computed for all tested skis. In addition, EKIN section averages were tested for significant differences between the tested skis using a one-way analysis of variance (ANOVA; p<0.05). For pairwise comparison, the post hoc Tukey-Kramer correction was used. To assess if the response to the ski intervention was similar for both skiers, the average EKIN difference between SKIREF and each ski type was compared between the skiers for each section. To test whether these ski response differences between the skiers were statistically significant, two-sided Student t tests (p<0.05) were used.

Finally, a local subsection in which the equipment-induced effects on EKIN seemed to be the greatest was defined. Within this subsection (the sharp right turn at gate 2), the relation between EKIN and the EKIN explanatory parameters were investigated by the use of: (1) Spearman’s rank correlation coefficients between the WLHSHKISKIWLHSKIWLH−SKIREF differences in speed and the WLHSHKISKIWLHSKIWLH−SKIREF differences in Ff; and (2) a multiple

Table 1 Specification of the basic geometric parameters of the DH skis used for the experiments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SKIREF</th>
<th>SKIWH</th>
<th>SKILH</th>
<th>SKILW</th>
<th>SKILWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (mm)</td>
<td>69</td>
<td>65</td>
<td>69</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Standing height (mm)</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>216</td>
<td>216</td>
<td>220</td>
<td>220</td>
<td>220</td>
</tr>
</tbody>
</table>

*SKIREF represents the original DH racing skis according to the FIS equipment rules valid until Winter Season 2011/2012.

Table 2 Characteristics of the course for the steep (SectionSTEEP) and the flat (SectionFLAT) sections of the downhill course

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Entire course</th>
<th>SectionSTEEP</th>
<th>SectionFLAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course length (m)</td>
<td>1302</td>
<td>84.23</td>
<td>61.67</td>
</tr>
<tr>
<td>Vertical drop (m)</td>
<td>402</td>
<td>35.65</td>
<td>12.23</td>
</tr>
<tr>
<td>Number of gates ()</td>
<td>21</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>Mean run time (s)</td>
<td>50.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Characteristics of speed and kinetic energy (EKIN) for the course sections steep (SectionSTEEP) and flat (SectionFLAT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SectionSTEEP</th>
<th>SectionFLAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group mean of EKIN (J/BW)</td>
<td>30.9</td>
<td>44.7</td>
</tr>
<tr>
<td>Group mean of speed (m/s)</td>
<td>24.6</td>
<td>29.6</td>
</tr>
</tbody>
</table>

Figure 1 Map of the course with gates, gate numbers and skier trajectories. The boundaries of the steep section (SectionSTEEP) and the flat section (SectionFLAT) and the sharp right turn at gate 2 are indicated with arrows.
regression analysis assessing the contribution of differences in CoefF and in F_{GRF} to explain the local differences in F_{F} between SKIREF and SKIWLH.

RESULTS

General characteristics of the test setup

Table 2 presents the course characteristics of the test setup on the WC DH course. Table 3 shows the average speed and E_{KIN} within SectionSTEEP and SectionFLAT for both skiers. Figure 2 illustrates the instantaneous E_{KIN} (ie, its mean±SE from start of SectionSTEEP to end of SectionFLAT for both skiers using SKIREF). It can be visually observed that E_{KIN}/speed was higher in SectionFLAT than SectionSTEEP and that instantaneous differences between the skiers were present at various locations of the course.

Differences in E_{KIN} between the tested skis within specific sections of the course

The results reporting the E_{KIN} section average differences between the tested skis are shown in table 4. The one-way ANOVA analysis was significant for both skiers for SectionSTEEP but not for SectionFLAT, indicating that the equipment intervention did not have an effect on E_{KIN}/speed in SectionFLAT. At the pairwise comparisons (right side of table 4), a difference is negative if the modified skis showed smaller E_{KIN} mean values than SKIREF. The only ski prototypes that caused a statistically significant reduction in E_{KIN}/speed compared with SKIREF was SKIWLH. This finding was independently observed for both skiers in SectionSTEEP only (skier A: -0.95 J/BW, -3.0%; skier B: -1.0 J/BW, -3.2%).

The extent to which a certain pair of skis caused the same E_{KIN}/speed difference with respect to SKIREF was not significantly different between skiers but was significantly smaller in SectionSTEEP ($0.07±0.03$ m/s) than in SectionFLAT ($0.21±0.08$ m/s).

Differences in E_{KIN} between SKIWLH and SKIREF in SectionSTEEP

Figure 3 illustrates the instantaneous differences in E_{KIN} between SKIREF and SKIWLH for skiers A and B within each section. The mean±SD of E_{KIN} is given for each prototype and course section on the left side. The right side presents selected pairwise ANOVA comparisons of SKIWLH with SKIREF. A difference is negative if the modified skis showed smaller E_{KIN} mean values than when skiing on SKIREF.

Table 4 shows the results of the ANOVA and selected pairwise comparisons for E_{KIN} in SectionSTEEP and SectionFLAT for both skiers. The p-values are rounded to three decimal places.

Table 4 Top: statistical analysis comparing the E_{KIN} for skiers A and B in the SectionSTEEP. Bottom: statistical analysis comparing the E_{KIN} for skiers A and B in the SectionFLAT.

<table>
<thead>
<tr>
<th>Ski</th>
<th>E_{KIN} (J/BW)</th>
<th>ANOVA p Value</th>
<th>Pairwise comparisons (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{KIN}</td>
<td>$SKIWH–SKIREF$</td>
<td>$SKIWL–SKIREF$</td>
</tr>
<tr>
<td>SKIREF</td>
<td>31.35±0.30</td>
<td>31.15±0.04</td>
<td>31.44±0.24</td>
</tr>
<tr>
<td>Skier A</td>
<td>31.15±0.04</td>
<td>31.15±0.04</td>
<td>31.05±0.25</td>
</tr>
<tr>
<td>Skier B</td>
<td>31.08±0.18</td>
<td>31.15±0.04</td>
<td>31.05±0.25</td>
</tr>
<tr>
<td></td>
<td>E_{KIN}</td>
<td>$SKIWH–SKIREF$</td>
<td>$SKIWL–SKIREF$</td>
</tr>
<tr>
<td>SectionSTEEP</td>
<td>31.15±0.04</td>
<td>31.15±0.04</td>
<td>31.05±0.25</td>
</tr>
<tr>
<td>Skier A</td>
<td>31.08±0.18</td>
<td>31.15±0.04</td>
<td>31.05±0.25</td>
</tr>
<tr>
<td>Skier B</td>
<td>31.08±0.18</td>
<td>31.15±0.04</td>
<td>31.05±0.25</td>
</tr>
<tr>
<td></td>
<td>E_{KIN}</td>
<td>$SKIWH–SKIREF$</td>
<td>$SKIWL–SKIREF$</td>
</tr>
<tr>
<td>SectionFLAT</td>
<td>45.24±0.47</td>
<td>45.47±0.61</td>
<td>45.67±1.01</td>
</tr>
<tr>
<td>Skier A</td>
<td>45.47±0.61</td>
<td>45.67±1.01</td>
<td>46.32±0.08</td>
</tr>
<tr>
<td>Skier B</td>
<td>45.30±0.96</td>
<td>45.07±0.61</td>
<td>44.54±0.15</td>
</tr>
<tr>
<td></td>
<td>E_{KIN}</td>
<td>$SKIWH–SKIREF$</td>
<td>$SKIWL–SKIREF$</td>
</tr>
<tr>
<td>SectionFLAT</td>
<td>45.24±0.47</td>
<td>45.47±0.61</td>
<td>45.67±1.01</td>
</tr>
<tr>
<td>Skier A</td>
<td>45.47±0.61</td>
<td>45.67±1.01</td>
<td>46.32±0.08</td>
</tr>
<tr>
<td>Skier B</td>
<td>45.30±0.96</td>
<td>45.07±0.61</td>
<td>44.54±0.15</td>
</tr>
</tbody>
</table>

Level of significance: *p<0.05, **p<0.01, ***p<0.001. Post hoc method with Tukey-Kramer correction for pairwise comparison.

The means±SD of E_{KIN} is given for each prototype and course section on the left side. The right side presents selected pairwise ANOVA comparisons of SKIWLH with SKIREF. A difference is negative if the modified skis showed smaller E_{KIN} mean values than when skiing on SKIREF.

ANOVA, analysis of variance; E_{KIN}, kinetic energy; Section$^{\text{FLAT}}$, flat course section; Section$^{\text{STEEP}}$, steep course section; SKIREF, reference ski.
The main findings of the study were that no difference between the tested skis on average E_{KIN} in Section\textsubscript{FLAT} were observed, but SKIWLH caused a $\sim3\%$ E_{KIN} reduction for both skiers in Section\textsubscript{STEEP} compared with SKIREF. No other differences between SKIREF and the ski prototypes were observed. The largest reduction in E_{KIN} was found in a sharp right turn at gate 2 for skier B ($\sim7.0\%$ for skier B; $\sim3.6\%$ for skier A). For skier B, this reduction in E_{KIN}/speed can be explained by increased F_s, which was mainly a result of increased Coeff_F.

The progress of E_{KIN} over the entire DH course

The current study revealed that for both skiers E_{KIN}/speed was lower in Section\textsubscript{STEEP} than in Section\textsubscript{FLAT} (table 3), which is in line with previous findings in men’s WC alpine skiing.5,6,18 Moreover, based on the study findings presented in tables 2 and 3, speed, terrain and course setting can be considered representative for both female and male WC races.5,6

Comparing the individual progressions of E_{KIN}/speed between skiers A and B when skiing on SKIREF, it seems that the general characteristics correspond well, but locally differ at certain spots along the course. A similar observation was already reported for other energy-related parameters in giant slalom by Supej.19 Additional analysis revealed that these interindividual differences in E_{KIN}/speed on SKIREF were generally larger than the differences caused by the ski intervention. The agreement in response to the ski intervention between skiers was best in Section\textsubscript{STEEP} where the significant speed reductions were found between SKIWLH and SKIREF for both skiers. These two aspects might strengthen faith in the findings of this study.

The effect of ski geometry and standing height on E_{KIN}

Effects over the entire DH course

As shown in this study, none of the tested pairs of skis caused significant differences compared with SKIREF in Section\textsubscript{FLAT}. However, a significant reduction of $\sim3\%$ in E_{KIN} was found for the prototype with all three parameters altered (SKIWLH) in Section\textsubscript{STEEP} (table 4). Furthermore, postanalysis for Section\textsubscript{STEEP} revealed that the tested ski interventions had the smallest effect on E_{KIN}/speed in the traverse (ie, between gates 4 and 5). Hence, the combination of steep terrain and turning courses seems to provoke differences between the modified skis and SKIREF while flat terrain in combination with ‘gliding turns’ (ie, turns, which can be skied in a tucked position) do not.

Table 5

| Skier A | F_s | 0.800*|
| Skier B | F_s | 1.000**|

Level of significance: *not significant at p<0.05, **p<0.01, ***p<0.001.

F_s, ski–snow friction force; SKIREF, reference ski.
Local effects within the steep section
Within Section STEEP SKIWLH caused an average reduction in E_{kin} of $\sim 3\%$ for both skiers. Locally, this reduction was sometimes even larger. A maximal reduction in E_{kin} ($\sim -7.0\%$) was found during the sharp right turn at gate 2 for skier B. Within this specific subsection, the terrain was the steepest and turn radius was the smallest across the entire course. These findings illustrate the extent of the equipment-induced E_{kin} reduction can—locally—reach quite substantial magnitudes that are comparable to the ones achieved by course setting interventions.561 4 For skier B, the local reduction in E_{kin} during the sharp right turn at gate 2 was explained with a significant correlation between speed reduction and F_F, indicating that the loss in speed was mainly a result of higher ski–snow friction. An additional postanalysis from gate 1 to turn end after gate 2 found no difference in the CoM trajectories and turn radii as long as the skiers were turning (turn radius smaller than 125 m), neither between SKIWLH and SKIREF within the same skier, nor between the skiers. Hence, it is reasonable that the differences in the skier’s response to the equipment intervention at gate 2 are most likely not a result of different trajectories, but rather due to differences in the ski–snow interaction.

Explanation of the observed local effects in F_F
The analysis of how the observed effects in F_F can be explained by variables related to the ski–snow interaction revealed that the differences in Coeff_F contributed to a greater extent to the differences in F_F than F_{GRF}. Hence, even the most extreme ski prototype (SKIWLH) might not change the skier’s movement patterns such that F_{GRF} is substantially affected, but changes how the skis interact with the snow. For skier B the increase in Coeff_F and, therefore, in F_F seem to start early during the initiation phase of the turn (figure 4), and might be explained by an increased skidding prior to gate passage, as already observed for slalom skiing.20 For skier A the increase in Coeff_F was delayed and had a different pattern (figure 4).

Ski geometry and standing height in the context of injury prevention
High speed and, therefore, high E_{kin} have several aspects that might influence the risk of severe traumatic injuries in super-G and DH.

First, in fall or crash situations, speed is a crucial factor, since the energy that is dissipated by forces during the impact increases with speed by the power of 2. In this context, the observed equipment-induced reduction in E_{kin}/speed would theoretically lead to the same per cent wise reduction in the impulse (force over time) that acts in impact situations. Restated, a 3–7% local reduction in E_{kin} would result in a reduction of the impact forces by 3–7% if the impact process time is held constant. However, it has to be pointed out that

Figure 4 Areas of uncertainty around the estimate of the mean (±SE) illustrating speed, ski–snow friction force (F_s), ground reaction force (F_{GRF}) and ski–snow friction coefficient (Coeff_F). Black area: reference ski; grey area: SKIWLH. The in-depth analysis of speed and F_s as well as F_{GRF} and Coeff_F for skier A (left side) and skier B (right side) are presented for the exemplary sharp right turn in steep section. G1 and G2 indicate gates 1 and 2, TS and TE indicate turn start (when mean turn radius across both ski types falls below 125 m) and turn end (when mean turn radius across both ski types exceeds 125 m).
such a preventative gain can only be achieved when skiing on the most extreme ski prototype (ie, varying in width, standing height and length) and probably only within steep terrain, particularly if course setting causes small turn radii.

Second, anticipation and adaptation time within demanding course sections decrease with increasing EKIN/speed, which plausibly results in a higher risk for technical and tactical mistakes. Thus, a reduction in speed would give athletes more time to prepare for difficult course sections (eg, jumps, rough terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversees the upcoming terrain transitions or turns) and make appropriate technical and/or tactical decisions. However, the observed reduction in speed in this study would only lead to marginal changes in preparation and adaption time. Given that an athlete skis with the average speed of SectionSTEEP (26.4 m/s) and oversee...
REFERENCES

Effect of ski geometry and standing height on kinetic energy: equipment designed to reduce risk of severe traumatic injuries in alpine downhill ski racing

Matthias Gilgien, Jörg Spörri, Josef Kröll and Erich Müller

doi: 10.1136/bjsports-2015-095465

Updated information and services can be found at:
http://bjsm.bmj.com/content/50/1/8

These include:

Supplementary Material
Supplementary material can be found at:
http://bjsm.bmj.com/content/suppl/2015/12/22/50.1.8.DC1

References
This article cites 19 articles, 5 of which you can access for free at:
http://bjsm.bmj.com/content/50/1/8#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (274)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/