Article Text

Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review
  1. Ebonie Rio1,2,
  2. Dawson Kidgell3,
  3. G Lorimer Moseley4,
  4. Jamie Gaida1,5,6,
  5. Sean Docking1,2,
  6. Craig Purdam7,
  7. Jill Cook1,2
  1. 1Department of Physiotherapy, School of Primary Health Care, Monash University, Melbourne, Victoria, Australia
  2. 2The Australian Centre for Research into Injury in Sport and its Prevention, Ballarat Federation University, Victoria, Australia
  3. 3Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
  4. 4Sansom Institute for Health Research, University of South Australia & Pain, Adelaide, South Australia, Australia
  5. 5Department of Physiotherapy, University of Canberra, Bruce, Australian Capital Territory, Australia
  6. 6University of Canberra Research Institute for Sport and Exercise, Australia
  7. 7Department of Physical Therapies, Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
  1. Correspondence to Ebonie Rio, 4 Hardy Crescent, Heathmont VIC 3135, Australia: Ebonie.rio{at}monash.edu

Abstract

Tendinopathy can be resistant to treatment and often recurs, implying that current treatment approaches are suboptimal. Rehabilitation programmes that have been successful in terms of pain reduction and return to sport outcomes usually include strength training. Muscle activation can induce analgesia, improving self-efficacy associated with reducing one's own pain. Furthermore, strength training is beneficial for tendon matrix structure, muscle properties and limb biomechanics. However, current tendon rehabilitation may not adequately address the corticospinal control of the muscle, which may result in altered control of muscle recruitment and the consequent tendon load, and this may contribute to recalcitrance or symptom recurrence. Outcomes of interest include the effect of strength training on tendon pain, corticospinal excitability and short interval cortical inhibition. The aims of this concept paper are to: (1) review what is known about changes to the primary motor cortex and motor control in tendinopathy, (2) identify the parameters shown to induce neuroplasticity in strength training and (3) align these principles with tendon rehabilitation loading protocols to introduce a combination approach termed as tendon neuroplastic training. Strength training is a powerful modulator of the central nervous system. In particular, corticospinal inputs are essential for motor unit recruitment and activation; however, specific strength training parameters are important for neuroplasticity. Strength training that is externally paced and akin to a skilled movement task has been shown to not only reduce tendon pain, but modulate excitatory and inhibitory control of the muscle and therefore, potentially tendon load. An improved understanding of the methods that maximise the opportunity for neuroplasticity may be an important progression in how we prescribe exercise-based rehabilitation in tendinopathy for pain modulation and potentially restoration of the corticospinal control of the muscle-tendon complex.

  • Tendon
  • Brain
  • Exercises
  • Tendinopathy
  • Quadriceps

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

Linked Articles