Skip to main content
Log in

A 3-Year Longitudinal Study of the Effect of Physical Activity on the Accrual of Bone Mineral Density in Healthy Adolescent Males

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

It has previously been suggested that physical activity predominantly influences the accumulation of bone density before puberty. The purpose of the present study was to examine the effect of physical activity on the accumulation of bone mass in male athletes between 16 and 19 years of age. The cohort studied consisted of 12 badminton players (aged 16.1 ± 0.5), 20 ice hockey players (aged 16.1 ± 0.5), and 24 age-matched controls (aged 16.1 ± 0.6). The bone mineral density (BMD, g/cm2) of the total body, spine, dominant and nondominant humerus, head and femoral neck was measured twice with a 3-year interval by dual energy X-ray absorptiometry (DXA). In addition, at the femoral neck, volumetric bone mineral density (vBMD, mg/cm3) was estimated. At baseline, the athletes as a whole group had significantly higher BMD at the total body (P = 0.03), dominant (P = 0.006) and nondominant humerus (P = 0.009) and femoral neck (P = 0.007) compared to the controls. At the 3-year followup, the athletes had significantly higher BMD at all sites (total body; P = 0.003, spine; P = 0.02, dominant humerus; P = 0.001, nondominant humerus; P = <0.001, femoral neck; P = 0.001) except for the head (P = 0.91) compared with controls. The athletes also had higher vBMD at the femoral neck compared with the controls (P = 0.01). Furthermore, to be an athlete was found to be independently associated with a higher increase in nondominant humerus BMD (β = 0.24; P < 0.05) and femoral neck BMD (β = 0.30; P < 0.05) compared with the controls, during the study period. In summary, these results suggests that it is possible to achieve continuous gains in bone mass in sites exposed to osteogenic stimulation after puberty in males by engaging in weight-bearing physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  1. InstitutionalAuthorName. (1993) ArticleTitleConsensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis Am J Med 94 646–650 Occurrence Handle8506892

    PubMed  Google Scholar 

  2. WS Browner AR Pressman MC Nevitt SR Cummings (1996) ArticleTitleMortality following fractures in older women. The study of osteoporotic fractures. Arch Intern Med 156 1521–1551 Occurrence Handle1:STN:280:BymB1M7it1w%3D Occurrence Handle8687260

    CAS  PubMed  Google Scholar 

  3. C Cooper EJ Atkinson SJ Jacobsen WM O’Fallon LJD Melton (1993) ArticleTitlePopulation-based study of survival after osteoporotic fractures. Am J Epidemiol 137 1001–1005 Occurrence Handle1:STN:280:ByyA3cvjs1E%3D Occurrence Handle8317445

    CAS  PubMed  Google Scholar 

  4. MC Nevitt B Ettinger DM Black et al. (1998) ArticleTitleThe association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128 793–800 Occurrence Handle1:STN:280:DyaK1c3ktlSjsQ%3D%3D Occurrence Handle9599190

    CAS  PubMed  Google Scholar 

  5. JA Eisman (1999) ArticleTitleGenetics of osteoporosis. Endocr Rev 20 788–804 Occurrence Handle1:CAS:528:DC%2BD3cXntV2itQ%3D%3D Occurrence Handle10605626

    CAS  PubMed  Google Scholar 

  6. P Jouanny F Guillemin C Kuntz C Jeandel J Pourel (1995) ArticleTitleEnvironmental and genetic factors affecting bone mass. Similarity of bone density among members of healthy families. Arthritis Rheum 38 61–67 Occurrence Handle1:STN:280:ByqC3MfktVQ%3D Occurrence Handle7818574

    CAS  PubMed  Google Scholar 

  7. E Seeman JL Hopper LA Bach et al. (1989) ArticleTitleReduced bone mass in daughters of women with osteoporosis. N Engl J Med 320 554–558 Occurrence Handle1:STN:280:BiaC38jksVY%3D Occurrence Handle2915666

    CAS  PubMed  Google Scholar 

  8. CW Slemenda JC Christian CJ Williams JA Norton CC Johnston Jr (1991) ArticleTitleGenetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6 561–567 Occurrence Handle1:STN:280:By6A287ovVI%3D Occurrence Handle1887818

    CAS  PubMed  Google Scholar 

  9. SR Cummings MC Nevitt WS Browner et al. (1995) ArticleTitleRisk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332 767–773 Occurrence Handle1:STN:280:ByqC28nislE%3D Occurrence Handle7862179

    CAS  PubMed  Google Scholar 

  10. PW Lu JN Briody GD Ogle et al. (1994) ArticleTitleBone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 9 1451–1458 Occurrence Handle1:STN:280:ByqC3MjlvVw%3D Occurrence Handle7817830

    CAS  PubMed  Google Scholar 

  11. D Teegarden WR Proulx BR Martin et al. (1995) ArticleTitlePeak bone mass in young women. J Bone Miner Res 10 711–715 Occurrence Handle1:STN:280:ByqA28njt1M%3D Occurrence Handle7639106

    CAS  PubMed  Google Scholar 

  12. SL Hui CW Slemenda CC Johnston Jr (1990) ArticleTitleThe contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1 30–34 Occurrence Handle1:STN:280:By2C28zmtlE%3D Occurrence Handle2133638

    CAS  PubMed  Google Scholar 

  13. CC Johnston Jr CW Slemenda (1994) ArticleTitlePeak bone mass, bone loss and risk of fracture. Osteoporos Int 4 43–45 Occurrence Handle8081058

    PubMed  Google Scholar 

  14. M Bradney G Pearce G Naughton et al. (1998) ArticleTitleModerate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength. A controlled prospective study. J Bone Miner Res 13 1814–1821 Occurrence Handle1:STN:280:DyaK1M%2Fmt1WrtA%3D%3D Occurrence Handle9844098

    CAS  PubMed  Google Scholar 

  15. SA French JA Fulkerson M Story (2000) ArticleTitleIncreasing weight-bearing physical activity and calcium intake for bone mass growth in children and adolescents: a review of intervention trials. Prev Med 31 722–731 Occurrence Handle10.1006/pmed.2000.0758 Occurrence Handle1:CAS:528:DC%2BD3MXktVWl Occurrence Handle11133340

    Article  CAS  PubMed  Google Scholar 

  16. F Trudeau L Laurencelle J Tremblay M Rajic RJ Shephard (1999) ArticleTitleDaily primary school physical education: effects on physical activity during adult life. Med Sci Sports Exerc 31 111–117 Occurrence Handle1:STN:280:DyaK1M7isVajug%3D%3D Occurrence Handle9927018

    CAS  PubMed  Google Scholar 

  17. JA O’Connor LE Lanyon H MacFie (1982) ArticleTitleThe influence of strain rate on adaptive bone remodelling. J Biomech 15 767–781 Occurrence Handle1:STN:280:BiyC3cbhsVM%3D Occurrence Handle7153230

    CAS  PubMed  Google Scholar 

  18. DM Raab-Cullen MP Akhter DB Kimmel RR Recker (1994) ArticleTitleBone response to alternate-day mechanical loading of the rat tibia. J Bone Miner Res 9 203–211 Occurrence Handle1:STN:280:ByuC1cbjtFM%3D Occurrence Handle8140933

    CAS  PubMed  Google Scholar 

  19. CT Rubin LE Lanyon (1984) ArticleTitleRegulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66 397–402 Occurrence Handle1:STN:280:BiuC3srptVE%3D Occurrence Handle6699056

    CAS  PubMed  Google Scholar 

  20. CT Rubin LE Lanyon (1985) ArticleTitleRegulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37 411–417 Occurrence Handle1:STN:280:BimD3c7ptVc%3D Occurrence Handle3930039

    CAS  PubMed  Google Scholar 

  21. LE Lanyon (1992) ArticleTitleControl of bone architecture by functional load bearing. J Bone Miner Res 7 IssueIDsuppl 2 S369–S375 Occurrence Handle1485545

    PubMed  Google Scholar 

  22. LE Lanyon CT Rubin G Baust (1986) ArticleTitleModulation of bone loss during calcium insufficiency by controlled dynamic loading. Calcif Tissue Int 38 209–216 Occurrence Handle1:CAS:528:DyaL28XktVGnu74%3D Occurrence Handle3085898

    CAS  PubMed  Google Scholar 

  23. RK Fuchs JJ Bauer CM Snow (2001) ArticleTitleJumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16 148–156 Occurrence Handle1:STN:280:DC%2BD3M7jtVKnug%3D%3D Occurrence Handle11149479

    CAS  PubMed  Google Scholar 

  24. A Heinonen H Sievanen P Kannus P Oja M Pasanen I Vuori (2000) ArticleTitleHigh-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 11 1010–1017 Occurrence Handle10.1007/s001980070021 Occurrence Handle1:STN:280:DC%2BD3M7osVKjsQ%3D%3D Occurrence Handle11256891

    Article  CAS  PubMed  Google Scholar 

  25. KJ Mackelvie HA McKay KM Khan PR Crocker (2001) ArticleTitleA school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 139 501–507 Occurrence Handle10.1067/mpd.2001.118190 Occurrence Handle1:STN:280:DC%2BD3MrltFKqsw%3D%3D Occurrence Handle11598595

    Article  CAS  PubMed  Google Scholar 

  26. JM Tanner (1962) Growth at adolescence. Blackwell Scientific Publications Philadelphia, PA

    Google Scholar 

  27. P Nordstrom U Pettersson R Lorentzon (1998) ArticleTitleType of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J Bone Miner Res 13 1141–1148 Occurrence Handle1:STN:280:DyaK1czisFGiuw%3D%3D Occurrence Handle9661078

    CAS  PubMed  Google Scholar 

  28. ES Orwoll SK Oviatt JA Biddle (1993) ArticleTitlePrecision of dual-energy x-ray absorptiometry: development of quality controls and their application in longitudinal studies. J Bone Miner Res 8 693–699 Occurrence Handle1:STN:280:ByyA3MfmsFY%3D Occurrence Handle8328311

    CAS  PubMed  Google Scholar 

  29. H Sievänen P Oja I Vouri (1992) ArticleTitlePrecision of dual-energy x-ray absorptiometry in determining bone mineral content of various skeletal sites. J Nucl Med 33 1137–1142 Occurrence Handle1597729

    PubMed  Google Scholar 

  30. P Nordstrom R Lorentzon (1996) ArticleTitleSite-specific bone mass differences of the lower extremities in 17-year-old ice hockey players. Calcif Tissue Int 59 443–448 Occurrence Handle10.1007/s002239900155 Occurrence Handle1:STN:280:ByiD1Mvmt1M%3D Occurrence Handle8939769

    Article  CAS  PubMed  Google Scholar 

  31. M Sundberg P Gardsell O Johnell et al. (2001) ArticleTitlePeripubertal moderate exercise increases bone mass in boys but not in girls: a population-based intervention study. Osteoporos Int 12 230–238 Occurrence Handle10.1007/s001980170134 Occurrence Handle1:STN:280:DC%2BD3M3oslKrtw%3D%3D Occurrence Handle11315242

    Article  CAS  PubMed  Google Scholar 

  32. GA Greendale E Barrett-Connor S Edelstein S Ingles R Haile (1995) ArticleTitleLifetime leisure exercise and osteoporosis. The Rancho Bernardo Study. Am J Epidemiol 141 951–959 Occurrence Handle1:STN:280:ByqB2MbmvV0%3D Occurrence Handle7741125

    CAS  PubMed  Google Scholar 

  33. H Brahm H Mallmin K Michaelsson H Strom S Ljunghall (1998) ArticleTitleRelationships between bone mass measurements and lifetime physical activity in a Swedish population. Calcif Tissue Int 62 400–412 Occurrence Handle10.1007/s002239900452 Occurrence Handle1:CAS:528:DyaK1cXislSkt7c%3D Occurrence Handle9541517

    Article  CAS  PubMed  Google Scholar 

  34. DA Bailey HA McKay RL Mirwald PR Crocker RA Faulkner (1999) ArticleTitleA six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res 14 1672–1679 Occurrence Handle1:STN:280:DyaK1MvitFCltA%3D%3D Occurrence Handle10491214

    CAS  PubMed  Google Scholar 

  35. KL Bennell SA Malcolm KM Khan et al. (1997) ArticleTitleBone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone 20 477–484 Occurrence Handle10.1016/S8756-3282(97)00026-4 Occurrence Handle1:STN:280:ByiB1M%2FmtVQ%3D Occurrence Handle9145246

    Article  CAS  PubMed  Google Scholar 

  36. DC Welten HC Kemper GB Post et al. (1994) ArticleTitleWeight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 9 1089–1096 Occurrence Handle1:STN:280:ByqD38fmt1I%3D Occurrence Handle7942156

    CAS  PubMed  Google Scholar 

  37. JA Blumenthal CF Emery DJ Madden et al. (1991) ArticleTitleEffects of exercise training on bone density in older men and women. J Am Geriatr Soc 39 1065–1070 Occurrence Handle1:STN:280:By2D1M7mt1E%3D Occurrence Handle1753043

    CAS  PubMed  Google Scholar 

  38. P Kannus H Haapasalo M Sankelo et al. (1995) ArticleTitleEffect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123 27–31 Occurrence Handle1:STN:280:ByqB1czhs1Q%3D Occurrence Handle7762910

    CAS  PubMed  Google Scholar 

  39. R Lorentzon H Wedren T Pietila (1988) ArticleTitleIncidence, nature, and causes of ice hockey injuries. A three-year prospective study of a Swedish elite ice hockey team. Am J Sports Med 16 392–396 Occurrence Handle1:STN:280:BiaD2cfgtVE%3D Occurrence Handle3189665

    CAS  PubMed  Google Scholar 

  40. P Nordstrom G Nordstrom K Thorsen R Lorentzon (1996) ArticleTitleLocal bone mineral density, muscle strength, and exercise in adolescent boys: a comparative study of two groups with different muscle strength and exercise levels. Calcif Tissue Int 58 402–408 Occurrence Handle10.1007/s002239900066 Occurrence Handle1:STN:280:BymB28botlY%3D Occurrence Handle8661480

    Article  CAS  PubMed  Google Scholar 

  41. P Nordstrom K Thorsen E Bergstrom R Lorentzon (1996) ArticleTitleHigh bone mass and altered relationships between bone mass, muscle strength, and body constitution in adolescent boys on a high level of physical activity. Bone 19 189–195 Occurrence Handle10.1016/8756-3282(96)00163-9 Occurrence Handle1:STN:280:ByiD3cnlslU%3D Occurrence Handle8853864

    Article  CAS  PubMed  Google Scholar 

  42. JA Calbet JS Moysi C Dorado LP Rodriguez (1998) ArticleTitleBone mineral content and density in professional tennis players. Calcif Tissue Int 62 491–496 Occurrence Handle10.1007/s002239900467 Occurrence Handle1:CAS:528:DyaK1cXjtlKksbs%3D Occurrence Handle9576975

    Article  CAS  PubMed  Google Scholar 

  43. H Haapasalo P Kannus H Sievanen et al. (1998) ArticleTitleEffect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 13 310–319 Occurrence Handle1:STN:280:DyaK1c7lsV2itg%3D%3D Occurrence Handle9495526

    CAS  PubMed  Google Scholar 

  44. PC Fehling L Alekel J Clasey A Rector RJ Stillman (1995) ArticleTitleA comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 17 205–210 Occurrence Handle10.1016/8756-3282(95)00171-9 Occurrence Handle1:CAS:528:DyaK2MXosFehsb0%3D Occurrence Handle8541132

    Article  CAS  PubMed  Google Scholar 

  45. A Heinonen P Oja P Kannus H Sievanen A Manttari I Vuori (1993) ArticleTitleBone mineral density of female athletes in different sports. Bone Miner 23 1–14 Occurrence Handle1:STN:280:ByuC3c%2FntVA%3D Occurrence Handle8274875

    CAS  PubMed  Google Scholar 

  46. EJ Lee KA Long WL Risser HB Poindexter WE Gibbons J Goldzieher (1995) ArticleTitleVariations in bone status of contralateral and regional sites in young athletic women. Med Sci Sports Exerc 27 1354–1361 Occurrence Handle1:STN:280:BymC3MjgtVE%3D Occurrence Handle8531605

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Länsförsäkringar insurance company, project number P4/01, and from the Swedish National Center for Research in Sports, project number 112/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gustavsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustavsson, A., Thorsen, K. & Nordström, P. A 3-Year Longitudinal Study of the Effect of Physical Activity on the Accrual of Bone Mineral Density in Healthy Adolescent Males . Calcif Tissue Int 73, 108–114 (2003). https://doi.org/10.1007/s00223-002-2026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-002-2026-1

Keywords

Navigation