Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Angiogenesis in health and disease

Abstract

Blood vessels constitute the first organ in the embryo and form the largest network in our body but, sadly, are also often deadly. When dysregulated, the formation of new blood vessels contributes to numerous malignant, ischemic, inflammatory, infectious and immune disorders. Molecular insights into these processes are being generated at a rapidly increasing pace, offering new therapeutic opportunities that are currently being evaluated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of a vascular network.
Figure 2: Vessel maintenance versus vessel regression.

Similar content being viewed by others

References

  1. Luttun, A., Carmeliet, G. & Carmeliet, P. Vascular progenitors: from biology to treatment. Trends Cardiovasc. Med. 12, 88–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer 2, 826–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Asahara, T. & Isner, J.M. Endothelial progenitor cells for vascular regeneration. J. Hematother. Stem Cell Res. 11, 171–178 (2002).

    Article  PubMed  Google Scholar 

  4. Mikkola, H.K. & Orkin, S.H. The search for the hemangioblast. J. Hematother. Stem Cell Res. 11, 9–17 (2002).

    Article  PubMed  Google Scholar 

  5. Reyes, M. et al. Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. 109, 337–346 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rehman, J., Li, J., Orschell, C.M. & March, K.L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).

    Article  PubMed  Google Scholar 

  7. Takakura, N. et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Grant, M.B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. 8, 607–612 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Gerber, H.P. et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9, 702–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Carmeliet, P. Developmental biology. One cell, two fates. Nature 408, 43–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lawson, N.D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Zhong, T.P., Childs, S., Leu, J.P. & Fishman, M.C. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Lawson, N.D., Vogel, A.M. & Weinstein, B.M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Visconti, R.P., Richardson, C.D. & Sato, T.N. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc. Natl. Acad. Sci. USA 99, 8219–8224 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kalimo, H., Ruchoux, M.M., Viitanen, M. & Kalaria, R.N. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 12, 371–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Mukouyama, Y.S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D.J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Cleaver, O. & Melton, D.A. Endothelial signaling during development. Nat. Med. 9, ′–′ (2003).

  23. Jain, R.K. & Munn, L.L. Leaky vessels? Call Ang1! Nat. Med. 6, 131–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Suri, C. et al. Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ruoslahti, E. Drug targeting to specific vascular sites. Drug Discov. Today 7, 1138–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Sood, A.K., Fletcher, M.S. & Hendrix, M.J. The embryonic-like properties of aggressive human tumor cells. J. Soc. Gynecol. Investig. 9, 2–9 (2002).

    Article  PubMed  Google Scholar 

  28. Wang, H.U., Chen, Z.F. & Anderson, D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Gerety, S.S., Wang, H.U., Chen, Z.F. & Anderson, D.J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X.Q. et al. Stromal cells expressing ephrin-B2 promote the growth and sprouting of ephrin-B2(+) endothelial cells. Blood 98, 1028–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gale, N.W. et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol. 230, 151–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Shin, D. et al. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev. Biol. 230, 139–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Stalmans, I. et al. VEGF: A modifier of the del22q11 (DiGeorge) syndrome? Nat. Med. 9, 173–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Loughna, S. & Sato, T.N. A combinatorial role of angiopoietin-1 and orphan receptor TIE1 pathways in establishing vascular polarity during angiogenesis. Mol. Cell 7, 233–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Pugh, C.W. & Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677–684 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Ferrara, N., Gerber, H.-P., LeCouter, J. & Lin, R. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Corada, M. et al. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100, 905–911 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 6, 460–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Simon, A.M. & McWhorter, A.R. Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev. Biol. 251, 206–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Hangai, M. et al. Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am. J. Pathol. 161, 1429–1437 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hynes, R.O. A reevaluation of integrins as regulators of angiogenesis. Nat. Med. 8, 918–921 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Hood, J.D. & Cheresh, D.A. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91–100 (2002).

    Article  PubMed  Google Scholar 

  48. Pepper, M.S. Extracellular proteolysis and angiogenesis. Thromb. Haemost. 86, 346–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Jackson, C. Matrix metalloproteinases and angiogenesis. Curr. Opin. Nephrol. Hypertens. 11, 295–299 (2002).

    Article  PubMed  Google Scholar 

  50. Luttun, A., Dewerchin, M., Collen, D. & Carmeliet, P. The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: insights from genetic studies. Curr. Atheroscler. Rep. 2, 407–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Qi, J.H. et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. 9, 407–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 3, 932–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4, 923–928 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Jain, R.K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Hellstrom, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol. 153, 543–553 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abramsson, A. et al. Analysis of mural cell recruitment to tumor vessels. Circulation 105, 112–117 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Dinehart, S.M., Kincannon, J. & Geronemus, R. Hemangiomas: evaluation and treatment. Dermatol. Surg. 27, 475–485 (2001).

    CAS  PubMed  Google Scholar 

  58. Richardson, T.P., Peters, M.C., Ennett, A.B. & Mooney, D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19, 1029–1034 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Cao, R. et al. Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-αα and -αβ receptors. FASEB J. 16, 1575–1583 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Takagi, H. et al. Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest. Ophthal. Mol. Vis. Sci. 44, 393–402 (2003).

    Article  Google Scholar 

  61. Shim, W.S. et al. Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp. Cell Res. 279, 299–309 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193, 1005–1014 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ahmad, S.A. et al. The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res. 61, 1255–1259 (2001).

    CAS  PubMed  Google Scholar 

  64. Carlson, T.R., Feng, Y., Maisonpierre, P.C., Mrksich, M. & Morla, A.O. Direct cell adhesion to the angiopoietins mediated by integrins. J. Biol. Chem. 276, 26516–26525 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell 3, 411–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Hackett, S.F., Wiegand, S., Yancopoulos, G. & Campochiaro, P.A. Angiopoietin-2 plays an important role in retinal angiogenesis. J. Cell. Physiol. 192, 182–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Vikkula, M. et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87, 1181–1190 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. van den Driesche, S., Mummery, C.L. & Westermann, C.J. Hereditary hemorrhagic telangiectasia: an update on transforming growth factor β signaling in vasculogenesis and angiogenesis. Cardiovasc. Res. 58, 20–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Lamouille, S., Mallet, C., Feige, J.J. & Bailly, S. Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100, 4495–4501 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Goumans, M.J. et al. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J. 21, 1743–1753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Srinivasan, S. et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum. Mol. Genet. 12, 473–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Humbert, M. & Trembath, R.C. Genetics of pulmonary hypertension: from bench to bedside. Eur. Respir. J. 20, 741–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Du, L. et al. Signaling molecules in nonfamilial pulmonary hypertension. N. Engl. J. Med. 348, 500–509 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Voelkel, N.F. et al. Janus face of vascular endothelial growth factor: the obligatory survival factor for lung vascular endothelium controls precapillary artery remodeling in severe pulmonary hypertension. Crit. Care Med. 30, S251–S256 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Yeager, M.E., Halley, G.R., Golpon, H.A., Voelkel, N.F. & Tuder, R.M. Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ. Res. 88, E2–E11 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Helisch, A. & Schaper, W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation 10, 83–97 (2003).

    Article  PubMed  Google Scholar 

  78. Kamihata, H. et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler. Thromb. Vasc. Biol. 22, 1804–1810 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Heil, M. et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am. J. Physiol. Heart Circ. Physiol. 283, H2411–H2419 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. van Royen, N. et al. Exogenous application of transforming growth factor β1 stimulates arteriogenesis in the peripheral circulation. FASEB J. 16, 432–434 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Buschmann, I.R. et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159, 343–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Voskuil, M. et al. Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am. J. Physiol. Heart Circ. Physiol. 284, H1422–H1428 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Hoefer, I.E. et al. Direct evidence for tumor necrosis factor-α signaling in arteriogenesis. Circulation 105, 1639–1641 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Pipp, F. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res. 92, 378–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. (2003).

  86. Isner, J.M. Myocardial gene therapy. Nature 415, 234–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Vacca, A. et al. Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis. Int. J. Clin. Lab. Res. 28, 55–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Norrby, K. Mast cells and angiogenesis. APMIS 110, 355–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Li, X.F. et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J. Clin. Endocrinol. Metab. 86, 1823–1834 (2001).

    CAS  PubMed  Google Scholar 

  90. Sica, A., Saccani, A. & Mantovani, A. Tumor-associated macrophages: a molecular perspective. Int. Immunopharmacol. 2, 1045–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Coussens, L.M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Schmeisser, A. & Strasser, R.H. Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J. Hematother. Stem Cell Res. 11, 69–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Nykanen, A.I. et al. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation 107, 1308–1314 (2003).

    Article  PubMed  CAS  Google Scholar 

  95. Melder, R.J. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med. 2, 992–997 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Carbone, J.E. & Ohm, D.P. Immune dysfunction in cancer patients. Oncology (Huntington) 16, 11–18 (2002).

    PubMed  Google Scholar 

  97. Dermond, O. & Ruegg, C. Inhibition of tumor angiogenesis by non-steroidal anti-inflammatory drugs: emerging mechanisms and therapeutic perspectives. Drug Resist. Update 4, 314–321 (2001).

    Article  CAS  Google Scholar 

  98. Bernardini, G. et al. Analysis of the role of chemokines in angiogenesis. J. Immunol. Meth. 273, 83–101 (2003).

    Article  CAS  Google Scholar 

  99. Trikha, M. & Nakada, M.T. Platelets and cancer: implications for antiangiogenic therapy. Semin. Thromb. Hemost. 28, 39–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Carmeliet, P. Biomedicine. Clotting factors build blood vessels. Science 293, 1602–1604 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Fernandez, P.M. & Rickles, F.R. Tissue factor and angiogenesis in cancer. Curr. Opin. Hematol. 9, 401–406 (2002).

    Article  PubMed  Google Scholar 

  102. English, D., Brindley, D.N., Spiegel, S. & Garcia, J.G. Lipid mediators of angiogenesis and the signalling pathways they initiate. Biochim. Biophys. Acta 1582, 228–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Benjamin, L.E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dor, Y. et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939–1947 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boudier, H.A. Arteriolar and capillary remodelling in hypertension. Drugs 58 (suppl. 1), 37–40 (1999).

    PubMed  Google Scholar 

  106. Benjamin, L.E., Hemo, I. & Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125, 1591–1598 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Vailhe, B. & Feige, J.J. Thrombospondins as anti-angiogenic therapeutic agents. Curr. Pharm. Des. 9, 583–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Schonfeld, C.L. Hyalocytes inhibit retinal pigment epithelium cell proliferation in vitro. Ger. J. Ophthalmol. 5, 224–228 (1996).

    CAS  PubMed  Google Scholar 

  110. Makino, Y., Kanopka, A., Wilson, W.J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J. Biol. Chem. 277, 32405–32408 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. D'Amore, P.A. & Ng, Y.S. Tales of the cryptic: unveiling more angiogenesis inhibitors. Trends Mol. Med. 8, 313–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Meyer, M. et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18, 363–374 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harada, K., Lu, S., Chisholm, D.M., Syrjanen, S. & Schor, A.M. Angiogenesis and vasodilation in skin warts. Association with HPV infection. Anticancer Res. 20, 4519–4523 (2000).

    CAS  PubMed  Google Scholar 

  114. Barillari, G. & Ensoli, B. Angiogenic effects of extracellular human immunodeficiency virus type 1 Tat protein and its role in the pathogenesis of AIDS-associated Kaposi's sarcoma. Clin. Microbiol. Rev. 15, 310–326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rupnick, M.A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl. Acad. Sci. USA 99, 10730–10735 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hackett, S.F. et al. Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J. Cell Physiol. 184, 275–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. De La Torre, J.C. Alzheimer's disease: How does it start? J. Alzheimers Dis. 4, 497–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Krupinski, J., Kaluza, J., Kumar, P., Kumar, S. & Wang, J.M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25, 1794–1798 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Van Belle, E. et al. Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation 96, 2667–2674 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Waltenberger, J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc. Res. 49, 554–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Rivard, A. et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol. 154, 355–363 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gennaro, G., Menard, C., Michaud, S.E. & Rivard, A. Age-dependent impairment of reendothelialization after arterial injury: role of vascular endothelial growth factor. Circulation 107, 230–233 (2003).

    Article  PubMed  Google Scholar 

  123. Jenkinson, L., Bardhan, K.D., Atherton, J. & Kalia, N. Helicobacter pylori prevents proliferative stage of angiogenesis in vitro: role of cytokines. Dig. Dis. Sci. 47, 1857–1862 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Yano, K., Brown, L.F. & Detmar, M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest. 107, 409–417 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chang, E., Yang, J., Nagavarapu, U. & Herron, G.S. Aging and survival of cutaneous microvasculature. J. Invest. Dermatol. 118, 752–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Maynard, S.E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hewett, P. et al. Down-regulation of angiopoietin-1 expression in menorrhagia. Am. J. Pathol. 160, 773–780 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Compernolle, V. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med. 8, 702–710 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Kasahara, Y. et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest. 106, 1311–1319 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kang, D.H. et al. Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am. J. Kidney Dis. 37, 601–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Martinez, P., Esbrit, P., Rodrigo, A., Alvarez-Arroyo, M.V. & Martinez, M.E. Age-related changes in parathyroid hormone-related protein and vascular endothelial growth factor in human osteoblastic cells. Osteoporos. Int. 13, 874–881 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Yin, G. et al. Endostatin gene transfer inhibits joint angiogenesis and pannus formation in inflammatory arthritis. Mol. Ther. 5, 547–554 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks all members of the Center for Transgene Technology and Gene Therapy and all external collaborators, and A. Vandenhoeck for artwork.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeliet, P. Angiogenesis in health and disease. Nat Med 9, 653–660 (2003). https://doi.org/10.1038/nm0603-653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0603-653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing