Skip to main content
Log in

β2-Agonists and exercise-induced asthma

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

β2-Agonists taken immediately before exercise provide significant protection against exercise-induced asthma (EIA) in most patients. However, when they are taken daily, there are some negative aspects regarding severity, control, and recovery from EIA. First, there is a significant minority (15–20%) of asthmatics whose EIA is not prevented by β2-agonists, even when inhaled corticosteroids are used concomitantly. Second, with daily use, there is a decline in duration of the protective effect of long-acting β2-agonists. Third, if breakthrough EIA occurs, recovery of lung function is slower in response to a β2-agonist, and additional doses are often required to achieve pre-exercise values. If a person who takes a β2-agonist daily experiences problems with exercise, then the physician should consider changing the treatment regimen to achieve better control of EIA. These problems likely result from desensitization of the β2-receptor on the mast cell, which enhances mediator release, and on the bronchial smooth muscle, which enhances the bronchoconstrictor response and delays recovery from EIA. These effects are reversed within 72 h after cessation of a β2-agonists. The important clinical question is: Are we acutally compromising the beneficial effects of β2-agonists on the prevention and recovery from EIA by prescribing them daily? Patients with EIA need to ensure that their doses of inhaled corticosteroid or other anti-inflammatory therapy are optimized so that, if necessary, a β2-agonist can be used intermittently as prophylactic medication with greater confidence in the outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, S. D. (1997), Exercise-induced asthma, in Allergy & Allergic Diseases, Kay, A. B., ed. Blackwell Scientific Publications, Oxford, pp. 692–711.

    Google Scholar 

  2. Sterk, P. J., Fabbri, L. M., Quanjer, P. H., et al. (1993). Airway responsiveness: Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir. J. 6, 53–83.

    Google Scholar 

  3. Task Force on Recognizing and Diagnosing Exercise-Related Asthma, Respiratory and Allergic Diseases in Sport (2005), Evidence-based recommendations for diagnosis of exercise-induced asthma in athletes. Eur. Respir. Mon. 33, 102–104.

    Article  Google Scholar 

  4. Kemp, J. P., Dockhorn, R. J., Shapiro, G. G., et al. (1998), Montelukast once daily inhibits exercise-induced bronchoconstriction in 6- to 14-year-old children with asthma. J. Pediatr. 133, 424–428.

    Article  PubMed  CAS  Google Scholar 

  5. Edelman, J. M., Turpin, J. A., and Bronsky, E. A. (2000), Oral Montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. Ann. Intern. Med. 132, 97–104.

    PubMed  CAS  Google Scholar 

  6. Patessio, A., Podda, A., Carone, M., Trombetta, N., and Donner, C. F., (1991), Protective effect and duration of action of formoterol aerosol on exercise-induced asthma. Eur. Respir. J. 4, 296–300.

    PubMed  CAS  Google Scholar 

  7. Anderson, S. D., Rodwell, L. T., Du Toit, J., and Young, I. H. (1991), Duration of protection by inhaled salmeterol in exercise-induced asthma. Chest 100, 1254–1260.

    Article  PubMed  CAS  Google Scholar 

  8. Kemp, J. P., Dockhorn, R. J., Busse, W. W., and Bleecker, E. R. (1994), Prolonged effect of inhaled salmeterol against exercise-induced bronchospasm. Am. J. Respir. Crit. Care Med. 150, 1612–1615.

    PubMed  CAS  Google Scholar 

  9. Anderson, S. D., Lambert, S., Brannan, J. D., et al. (2001), Laboratory protocol for exercise asthma to evaluate salbutamol given by two devices. Med. Sci. Sports Exerc. 33, 893–900.

    Article  PubMed  CAS  Google Scholar 

  10. Anderson, S. D., Sue-Chu, M., Perry, C. P., et al. (2006), Bronchial challenges in athletes applying to inhale a b2-agonist at the 2004 summer Olympics. J. Allergy Clin. Immunol. 117, 767–773.

    Article  PubMed  CAS  Google Scholar 

  11. Asthma Management Handbook 2002, National Asthma Council Australia. National Asthma Council Australia Ltd, South Melbourne.

  12. Mims Annual 1999, Caswell, A., ed. MediMedia Australia Pty Ltd, Sydney, pp. 2–92.

    Google Scholar 

  13. Weiler, J. M., Nathan, R. A., Rupp, N. T., Kalberg, C. J., Emmett, A., and Dorinsky, P. M. (2005), Effect of fluticasone/salmeterol administered via a single device on exercise-induced bronchospasm in patients with persistent asthma. Ann. Allergy Asthma Immunol. 94, 65–72.

    PubMed  CAS  Google Scholar 

  14. Inman, M. D. and O'Byrne, P. M. (1996), The effect of regular inhaled albuterol on exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. 153, 65–69.

    PubMed  CAS  Google Scholar 

  15. Hancox, R. J., Subbarao, P., Kamada, D., Watson, R. M., Hargreave, F. E., and Inman, M. D. (2002), Beta2-agonist tolerance and exercise-induced bronchospasm. Am. J. Respir. Crit. Care Med. 165, 1068–1070.

    PubMed  Google Scholar 

  16. Dhillon, D. P. (1991), Studies in exercise-induced asthma. Eur. Respir. Rev. 1, 265–276.

    Google Scholar 

  17. Ramage, L., Lipworth, B. J., Ingram C. G., Cree, I. A., and Dhillon, D. P. (1994), Reduced protection against exercise induced bronchoconstriction after chronic dosing with salmeterol. Respir. Med. 88, 363–368.

    Article  PubMed  CAS  Google Scholar 

  18. Nelson, J. A., Strauss, L., Skowronski, M., Ciufo, R., Novak, R., and McFadden, E. R. (1998), Effect of long-term salmeterol treatment on exercise-induced asthma. N. Engl. J. Med. 339, 141–146.

    Article  PubMed  CAS  Google Scholar 

  19. Simons, F. E., Gerstner, T. V., and Cheang, M. S. (1997), Tolerance to the bronchoprotective effect of salmeterol in adolescents with exercise-induced asthma using concurrent inhaled glucocorticoid treatment. Pediatrics 99, 655–659.

    Article  PubMed  CAS  Google Scholar 

  20. Storms, W., Chervinsky, P., Ghannam, A. F., Bird, S., Hustad, C. M., and Edelman, J. M. (2004), A comparison of the effects of oral montelukast and inhaled salmeterol on response to rescue bronchodilation after challenge. Respir. Med. 98, 1051–1062.

    Article  PubMed  Google Scholar 

  21. Evans, D. W., Salome, C. M., King, G. G., Rimmer, S. J., Seale, J. P., and Woolcock, A. J. (1997), Effect of regular inhaled salbutamol on airway responsiveness and airway inflammation in rhinitic non-asthmatic subjects. Thorax 52, 136–142.

    PubMed  CAS  Google Scholar 

  22. Bisgaard, H. (2000), Long-acting beta2-agonists in management of childhood asthma: A critical review of the literature. Pediatr. Pulmonol. 29, 221–234.

    Article  PubMed  CAS  Google Scholar 

  23. Lipworth, B. J. (1997), Alfway subsensitivity with long-acting beta 2-agonists. Is there a cause for concern? Drug-Saf. 16, 295–308.

    PubMed  CAS  Google Scholar 

  24. Anderson, S. D. and Brannan, J. D. (2004), Long-acting beta2-adrenoceptor agonists and exercise-induced asthma: Lessons to guide us in the future. Paediatr. Drugs 6, 161–175.

    Article  PubMed  Google Scholar 

  25. Hanania, N. A. and Moore, R. H. (2004), Anti-inflammatory activities of beta2-agonists. Curr. Drug Targets Inflamm. Allergy 3, 271–277.

    Article  PubMed  CAS  Google Scholar 

  26. Johnson, M. (2006), Molecular mechanisms of β2 adrenergic receptor function, response and regulation. J. Allergy Clin. Immunol. 117, 18–24.

    Article  PubMed  CAS  Google Scholar 

  27. Hayes, M. J., Qing, F., Rhodes, C. G., et al. (1996), In vivo quantification of human pulmonary beta-adrenoceptors: effect of beta-agonist therapy. Am. J. Respir. Crit. Care Med. 154, 1277–1283.

    PubMed  CAS  Google Scholar 

  28. Haney, S. and Hancox, R. J. (2005), Rapid onset of tolerance to beta-agonist bronchodilation. Respir Med. 99, 566–571.

    Article  PubMed  Google Scholar 

  29. Shapiro, G. S., Yegen, Ü., Xiang, J., Kottakis, J., and Della Cioppa, G. (2002), A randomized, double-blind, single-dose, crossover clinical trial of the onset and duration of protection from exercise-induced bronchoconstriction by formoterol and albuterol. Clin. Ther. 24, 2077–2087.

    Article  PubMed  CAS  Google Scholar 

  30. Grönneröd, T. A., Von Berg, A., Schwabe, G., and Soliman, S. (2000), Formoterol via Turbuhaler® gave better protection than terbutaline against repeated exercise challenge for up to 12 hours in children and adolescents. Respir. Med. 94, 661–667.

    Article  PubMed  Google Scholar 

  31. Green, C. P. and Price, J. F. (1992), Prevention of exercise induced asthma by inhaled salmeterol zinofoate. Arch. Dis. Child. 67, 1014–1017.

    PubMed  CAS  Google Scholar 

  32. Nielsen, K. G., Skov, M., Klug, B., Ifversen, M., and Bisgaard, H. (1997), Flow dependent effect of formoterol dry-powder inhaled from the Aeroliser®. Eur. Respir. J. 10, 2105–2109.

    Article  PubMed  CAS  Google Scholar 

  33. Daugbjerg, P., Nielsen, K. G., Skov, M., and Bisgaard, H. (1996), Dunation of action of formoterol and salbutamol dry-powder inhalation in prevention of exercise-induced asthma in children. Acta Paediatr. 25: 684–687.

    Google Scholar 

  34. Bensch, G., Berger, W. E., Blokhin, B. M., et al. (2002), One-year efficacy and safety of inhaled formoterol dry powder in children with persistent asthma. Ann. Allergy Asthma Immunol. 89, 180–190.

    PubMed  CAS  Google Scholar 

  35. Anderson, S. D., Bye, P. T. P., Schoeffel, R. E., Seale, J. P., Taylor, K. M., and Ferris, L. (1981), Arterial plasma histamine levels at rest, during and after exercise in patients with asthma: Effects of terbutaline aerosol. Thorax 36, 259–267.

    PubMed  CAS  Google Scholar 

  36. Yates, D. H., Kharitonov, S., and Barnes, P. J. (1996), An inhaled glucocorticoid does not preveent tolerance to the protective effect of a long-acting inhaled beta 2-agonist. Am. J. Respir. Crit. Care Med. 154, 1603–1607.

    PubMed  CAS  Google Scholar 

  37. Cockcroft, D., Swystun, V. A., and Ghagat, R. (1995), Interaction of inhaled beta 2 agonist and inhaled corticosteroid on airway responsiveness to allergen and methacholine. Am. J. Respir. Crit. Care Med. 152, 1485–1489.

    PubMed  CAS  Google Scholar 

  38. Hancox, R. J., Aldridge, E. E., Cowan, J. O., et al. (1999), Tolerance to beta-agonists during acute bronchoconstriction. Eur. Respir. J. 14, 283–287.

    Article  PubMed  CAS  Google Scholar 

  39. Jones, S. L., Cowan, J. O., Flannery, E. M., Hancox, R. J., Herbison, G. P., and Taylor, D. R. (2001), Reversing acute bronchoconstriction in asthma: the effect of bronchodilator tolerance after treatment with formoterol. Eur. Respir. J. 17, 368–373.

    Article  PubMed  CAS  Google Scholar 

  40. Booth, H., Bish, R., Walters, J., Whitehead, F., and Walters, E. H. (1996), Salmeterol tachyphylaxis in steroid treated asthmatic subjects. Thorax 51, 1100–1104

    PubMed  CAS  Google Scholar 

  41. Henriksen, J. M., Agertoft, L., and Pedersen, S. (1992), Protective effect and duration of action of inhaled formoterol and salbutamol on exercise-induced asthma in children. J. Allergy Clin. Immunol. 89, 1176–1182.

    Article  PubMed  CAS  Google Scholar 

  42. Boner, A. L., Spezia, E., Piovesan, P., Chiocca, E., and Maiocchi, G. (1994), Inhaled formoterol in the prevention of exercise-induced bronchoconstriction in asthmatic children. Am. J. Respir Crit. Care Med. 149, 935–938.

    PubMed  CAS  Google Scholar 

  43. Carlsen, K. H., Roksund, O., Olsholt, K., Nija, F., Leegard, J., and Bratten, G. (1995), Overnight protection by inhaled salmeterol on exercise-induced asthma in children. Eur. Respir. J. 8, 1852–1855.

    Article  PubMed  CAS  Google Scholar 

  44. de Benedictis, F. M., Tuteri, G., Pazzelli, P., Niccoli, A., Mezzetti, D., and Vaccaro, R. (1996), Salmeterol in exercise-induced bronchoconstriction in asthmatic children: comparison of two doses. Eur. Respir. J. 9, 2099–2103.

    Article  PubMed  Google Scholar 

  45. Wraight, J. M., Hancox, R. J., Herbison, G. P., Cowan, J. O., Flannery, E. M., and Taylor, D. R. (2003), Bronchodilator tolerance: the impact of increasing bronchoconstriction. Eur. Respir. J. 21, 810–815.

    Article  PubMed  CAS  Google Scholar 

  46. Aldridge, R. E., Hancox, R. J., Robin Taylor, D., et al. (2000), Effects of terbutaline and budesonide on sputum cells and bronchial hyperresponsiveness in asthma. Am. J. Respir. Crit. Care Med. 161, 1459–1464.

    PubMed  CAS  Google Scholar 

  47. Swystun, V. A., Gordon, J. R., Davis, E. B., Zhand, X., and Cockcroft, D. W. (2000), Mast cell tryptase release and asthmatic responses to allergen increase with regular use of salbutamol. J. Allergy Clin. Immunol. 106, 57–64.

    Article  PubMed  CAS  Google Scholar 

  48. Cheung, D., Timmers, M. C., Zwinderman, A. H., Bel, E. H., Dijkman, J. H., and Sterk, P. J. (1992), Lonterm effects of a long acting beta 2-adrenoceptor agonist, salmeterol, on airway hyperresponsiveness in patients with mild asthma. N. Engl. J. Med. 328, 665, 666.

    Google Scholar 

  49. Kalra, S., Swystun, V. A., Bhagat, R., and Cockcroft, D. W. (1996), Inhaled corticosteroids do not prevent the development of tolerance to the broncho-protective effect of salmeterol, Chest 109, 953–956.

    PubMed  CAS  Google Scholar 

  50. Lim, S., Jatakanan, A., John, M., et al. (1999), Effect of inhaled budesonide on lung function and airway inflammation. Am. J. Respir. Crit. Care Med. 159, 22–30.

    PubMed  CAS  Google Scholar 

  51. Mak, J. C. W., Roffel, F., Katsunuma, T., Elzinga, C. R. S., Zaagsma, J., and Barnes, P. J. (2000), Up-regulation of airway smooth muscle histamine H1 receptor mRNA, protein, and function by beta 2-adrenoceptor activation. Mol. Pharmacol. 57, 857–864.

    PubMed  CAS  Google Scholar 

  52. McGraw, D. W., Almoosa, K. F., Paul, R. J., Kobilka, B. K., and Liggett, S. B. (2003), Antithetic regulation by beta-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway beta-agonist paradox. J. Clin. Invest. 112, 619–626.

    Article  PubMed  CAS  Google Scholar 

  53. McGraw, D. W. and Liggett, S. B. (2005), Molecular mechanisms of beta2-adrenergic receptor function and regulation. Proc. Am. Thorac. Soc. 2, 292–296; discussion 311,312.

    Article  PubMed  CAS  Google Scholar 

  54. Liggett, S. B. (2002), Update on current concepts of the molecular basis of beta2-adrenergic receptor signaling. J. Allergy Clin. Immunol. 110, S223-S227.

    Article  PubMed  CAS  Google Scholar 

  55. Israel, E., Chinchilli, V. M., Ford, J. G., et al. (2004) Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebocontrolled cross-over trial. Lancet 364, 1505–1512.

    Article  PubMed  CAS  Google Scholar 

  56. Wechsler, M. E., Lehman, E., Lazarus, S. C., et al. (2006), {beta}-adrenergic Receptor Polymorphisms and Response to Salmeterol. Am. J. Respir. Crit. Care Med. 173, 519–526.

    Article  PubMed  CAS  Google Scholar 

  57. Chong, L. K., Suvarna, K., Chess-Williams, R., and Peachell, P. T. (2004), Desensitisation of β2-adrenoceptor-mediated responses by short-acting β2-adrenoceptor agonists in human lung mast cells. Brit. J. Pharmacol. 138, 512–520.

    Article  CAS  Google Scholar 

  58. Scola, A. M., Chong, L. K., Suvarna, S. K., Chess-Williams, R., and Peachell, P. T. (2004), Desensitisation of mast cell β2-adrenoceptor-mediated responses by salmeterol and formoterol. Br. J. Pharmac. 141, 163–171.

    Article  CAS  Google Scholar 

  59. Scola, A. M., Chong, L. K., Chess-Williams, R., and Teachell, P. T. (2004), Influence of agonist intrinsic activity on desensitisation of β2-adrenoceptor-mediated responses in mast cells. Br. J. Pharmac. 143, 71–80.

    Article  CAS  Google Scholar 

  60. Caillaud, C., Le Creff, C., Legros, P., and Denjean, A., (2003), Strenuous exercise increases plasmatic and urinary leukotriene E4 in cyclists. Can. J. Appl. Physiol. 28, 793–806.

    PubMed  CAS  Google Scholar 

  61. Mickleborough, T. D., Murray, R. L., Ionescu, A. A., and Lindley, M. R. (2003), Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes. Am. J. Respir. Crit. Care Med. 168, 1181–1189.

    Article  PubMed  Google Scholar 

  62. Anderson, S. D. and Kippelen, P. (2005), Exercise-induced bronchoconstriction: Pathogenesis. Curr. Allergy Asthma Reports 5, 116–122.

    Article  Google Scholar 

  63. Holzer, K., Anderson, S. D., Chan, H.-K., and Douglass, J. (2003), Mannitol as a challenge test to identify exercise-induced bronchoconstriction in elite athletes. Am. J. Respir. Crit. Care Med. 167, 534–547.

    Article  PubMed  Google Scholar 

  64. Leuppi, J. D., Anderson, S. D., Brannan, J. D., Belousova, E., Reddel, H. K., and Rodwell, L. T. (2005), Questionnaire responses that predict airway response to hypertonic saline. Respiration 72, 52–60.

    Article  PubMed  Google Scholar 

  65. Anderson, S. D., Wong, R., Bennett, M., Beckert, L. (2006), Summary and knowledge and thinking about asthma and diving since 1993. Diving Hyperbar. Med. 36, 12–18.

    Google Scholar 

  66. Hofstra, W. B., Neijens, H. J., Duiverman, E. J., et al. (2000), Dose-response over time to inhaled fluticasone propionate: treatment of exercise- and methacholine-induced bronchoconstriction in children with asthma. Pediatr. Pulmonol. 29, 415–423.

    Article  PubMed  CAS  Google Scholar 

  67. Jonasson, G., Carlsen, K. H., and Hultquist, C. (2000), Low-dose budesonide improves exercise-induced bronchospasm in schoolchildren. Pediatr. Allergy Immunol. 11, 120–125.

    Article  PubMed  CAS  Google Scholar 

  68. Pedersen, S. and Hansen, O. R. (1995), Budesonide treatment of moderate and severe asthma in children: a dose-response study. J. Allergy Clin. Immunol. 95, 29–33.

    Article  PubMed  CAS  Google Scholar 

  69. Anderson, S. D., Rozea, P. J., Dolton, R., and Lindsay, D. A. (1975), Inhaled and oral bronchodilator therapy in exercise-induced asthma. Aust. N.Z. J. Med. 5, 544–550.

    PubMed  CAS  Google Scholar 

  70. Anderson, S. D., Seale, J. P., Rozea, P., Bandler, L., Theobald, G., and Lindsay, D. A. (1976), Inhaled and oral salbutamol in exercise-induced asthma. Am. Rev. Respir. Dis. 114, 493–500.

    PubMed  CAS  Google Scholar 

  71. Schoeffel, R. E., Anderson, S. D., and Seale, J. P. (1981), The protective effect and duration of action of metaproteronol aerosol on exercise-induced asthma. Ann. Allergy 46, 273–275.

    PubMed  CAS  Google Scholar 

  72. Smith, C. M., Anderson, S. D., and Seale, J. P. (1988), The duration of action of the combination of fenoterol hydrobromide and ipratropium bromide in protecting against asthma provoked by hyperpnea. Chest 94, 709–717.

    Article  PubMed  CAS  Google Scholar 

  73. Woolley, M., Anderson, S. D., and Quigley, B. (1990), Duration of protective effect of terbutaline sulphate and cromolyn sodium alone and in combination on exercise-induced asthma. Chest 97, 39–45.

    Article  PubMed  CAS  Google Scholar 

  74. Drury, D. E., Chong, L. K., Ghahramani, P., and Peachell, P. T. (1998), Influence of receptor reserve on beta-adrenoceptor-mediated responses in human lung mast cells. Br. J. Pharmacol. 124, 711–718.

    Article  PubMed  CAS  Google Scholar 

  75. Brightling, C. E., Bradding, P., Symon, F. A., Holgate, S. T., Wardlaw, A. J., and Pavord, I. D., (2002), Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 346, 1699–1705.

    Article  PubMed  Google Scholar 

  76. McFadden, E. R., Lenner, K. A., and Strohl, K. P. (1986), Postexertional airway rewarming and thermally induced asthma. J. Clin. Invest. 78, 18–25.

    Article  PubMed  Google Scholar 

  77. Spooner, C., Spooner, G., and Rowe, B. (2003), Mast-cell stabilising agents to prevent exercise-induced bronchoconstriction. Cochrane Database Syst. Rev. 4, CD002307.

    Google Scholar 

  78. Church, M. K. and Hiroi, J., (1987), Inhibition of IgE-dependent histamine release from human dispersed lung mast cells by anti-allergic drugs and salbutamol. Br. J. Pharmac. 90, 421–429.

    CAS  Google Scholar 

  79. Silverman, M. and Andrea, T., (1972), Time course of effect of disodium cromoglycate on exercise-induced asthma. Arch. Dis. Child. 47, 419–422.

    PubMed  CAS  Google Scholar 

  80. Baki, A. and Orhan, F., (2002), The effect of loratadine in exercise-induced asthma. Arch. Dis. Child. 86, 38, 39.

    Article  PubMed  CAS  Google Scholar 

  81. Patel, K. R., (1984), Terfenadine in exercise-induced asthma. Brit. Med. J. 85, 1496, 1497.

    Google Scholar 

  82. Shimizu, T., Mochizuki, H., Shigeta, M., and Morikawa, A. (1997), Effect of inhaled indomethacin on exercise-induced bronchoconstriction in children with asthma. Am. J. Respir. Crit. Care Med. 155, 170–173.

    PubMed  CAS  Google Scholar 

  83. Dahlén, B., Roquet, A., Inman, M. D., et al. (2002), Influence of zafirlukast and loratadine on exercise-induced bronchoconstriction. J. Allergy Clin. Immunol. 109, 789–793.

    Article  PubMed  CAS  Google Scholar 

  84. Peroni, D. G., Piacentini, G. L., Pietrobelli, A., et al. (2002). The combination of single-dose montelukast and loratadine on exercise-induced bronchospasm in children. Eur. Respir. J. 19, 104–107.

    Article  CAS  Google Scholar 

  85. Hallstrand, T. S., Moody, M. W., Wurfel, M. M., Schwartz, L. B., Henderson, W. R., and Aitken, M. L. (2005), Inflammatory basis of exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. 472, 679–689.

    Article  Google Scholar 

  86. Anderson, S. D., (1985), Exercise-induced asthma. The state of the art. Chest 87S, 191S-195S.

    Google Scholar 

  87. C'Sullivan, S., Dahlén, B., Dahlén, S.-E., and Kumlin, M. (1996), Increased urinary excretion of the prostaglandin D2 metabolite 9α,11β-prostaglandin F2 after aspirin challenge supports mast cell activation in aspirin-induced airway obstruction. J. Allergy Clin. Immunol. 98, 421–432.

    Article  Google Scholar 

  88. Reiss, T. F., Hill, J. B., Harman, E., et al. (1997), Increased urinary excretion of LTE4 after exercise and attenuation of exercise-induced bronchospasm by montelukast, a cysteinylleukotriene receptor antagonist. Thorax 52, 1030–1035.

    Article  PubMed  CAS  Google Scholar 

  89. Anderson, S. D., (1984), Is there a unifying hypothesis for exercise-induced asthma? J. Allergy Clin. Immunol. 73, 660–665.

    Article  PubMed  CAS  Google Scholar 

  90. Anderson, S. D. and Daviskas, E., (2000), The mechanism of exercise-induced asthma is... J. Allergy Clin. Immunol. 106, 453–459.

    Article  PubMed  CAS  Google Scholar 

  91. Eggleston, P. A., Kagey-Sobotka, A., Schleimer, R. P., and Lichtenstein, L. M., (1984), Interaction between hyperosmolar and IgE-mediated histamine release from basophils and mast cells. Am. Rev. Respir. Dis. 130, 86–91.

    PubMed  CAS  Google Scholar 

  92. Brannan, J. D., Gulliksson, M., Anderson, S. D., Chew, N., and Kumlin, M., (2003), Evidence of mast cell activation and leukotriene release after mannitol inhalation. Eur. Respir. J. 22, 491–496.

    Article  PubMed  CAS  Google Scholar 

  93. Brannan, J. D., Gulliksson, M., Anderson, S. D., Chew, N., Seale, J. P., and Kumlin, M., (2006), Inhibition of PGD2 release from mast cell protects against mannitol-induced airway narrowing. Eur. Respir. J. 27, 944–950.

    PubMed  CAS  Google Scholar 

  94. Waldeck, B., (2002), Beta-adrenoceptor agonists and asthma—100 years of development. Eur. J. Pharmacol. 445, 1–12.

    Article  PubMed  CAS  Google Scholar 

  95. Solèr, M., Joos, L., Bolliger, C. T., Elsasser, S., and Perruchoud, A. P., (1994), Bronchoprotection by salmeterol: cell stabilization or functional antagonism? Comparative effects on histamine- and AMP-induced bronchoconstriction. Eur. Respir. J. 7, 1973–1977.

    PubMed  Google Scholar 

  96. Anderson, S. D., Silverman, M., Konig, P., and Godfrey, S., (1975), Exercise-induced asthma. A Review. Br. J. Dis. Chest 69, 1–39.

    Article  PubMed  CAS  Google Scholar 

  97. Tullett, W. M., Tan, K. M., Wall, R. T., and Patel, K. R., (1985), Dose-response effect of sodium cromoglycate pressurised aerosol in exercise induced asthma. Thorax 40, 41–44.

    Article  PubMed  CAS  Google Scholar 

  98. Patel, K. R. and Wall, R. T., (1986), Dose-duration effect of sodium cromoglycate aerosol in exercise-induced asthma. Eur. J. Respir. Dis. 69, 256–260.

    PubMed  CAS  Google Scholar 

  99. Albazzaz, M. K., Neale, M. G., and Patel, K. R. (1992), Dose duration of nebulized nedocromil sodium in exercise-induced asthma. Eur. Respir. J. 5, 967–969.

    PubMed  CAS  Google Scholar 

  100. Tsuji, T., Kato, T., Kimata, M., et al. (2004), Differential effects of beta2-adrenoceptor desensitization on the IgE-dependent release of chemical mediators from cultured human mast cells. Biol. Pharm. Bull. 27, 1549–1554.

    Article  PubMed  CAS  Google Scholar 

  101. Giannini, D., Carlett, A., Dente, F. L., et al. (1996), Tolerance to the protective effect of salmeterol on allergen challenge. Chest, 110, 1452–1457.

    PubMed  CAS  Google Scholar 

  102. Food and Drug Administration. (2005), Pulmonary-Allergy Drugs Advisory Committee, Available at: www.fda.gov/ohrms/2005.

  103. Nielsen, K. G., Auk, I.L., Bojsen, K., Ifversen, M., Klug, B., and Bisgaard, H., (1998), Clinical effect of Diskus dry-powder inhaler at low and high inspiratory flow rates in children. Eur. Respir. J. 11, 350–354.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra D. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, S.D., Caillaud, C. & Brannan, J.D. β2-Agonists and exercise-induced asthma. Clinic Rev Allerg Immunol 31, 163–180 (2006). https://doi.org/10.1385/CRIAI:31:2:163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CRIAI:31:2:163

Index Entries

Navigation