The role of changes in mechanical usage set points in the pathogenesis of osteoporosis

J Bone Miner Res. 1992 Mar;7(3):253-61. doi: 10.1002/jbmr.5650070303.

Abstract

Mechanical usage (MU) effects on modeling drifts and BMU-based remodeling affect bone mass in defined ways. Decreased MU stops additions of bone by modeling and increases removal of bone next to marrow by remodeling. The latter effect thins cortices and reduces trabecular number, thickness, and connectivity. Return to normal MU makes remodeling begin conserving existing bone and leaves modeling still off. Hypervigorous MU can make modeling increase bone mass during growth and makes remodeling keep conserving it in children and adults. These effects can be said to begin when typical bone strains rise through two threshold ranges, one for remodeling and a higher one for modeling. Raising the thresholds while normal MU continues should give bone a spurious disuse message, whereupon disuse effects would begin. The bone anatomic and tissue dynamic patterns in acute and chronic disuse resemble those seen in developing and acquired postmenopausal osteoporosis and in other forms of osteoporosis, too. If some hormones, drugs, and other agents increase those thresholds, this could explain such similarities.

Publication types

  • Review

MeSH terms

  • Biomechanical Phenomena
  • Bone Diseases, Metabolic / etiology*
  • Bone Diseases, Metabolic / physiopathology
  • Humans
  • Osteoporosis / etiology*
  • Osteoporosis / physiopathology