Sensitivity Analysis 1a: Days of hospitalization with three active controls removed i.e., Baumann-2011, Sana Mina-2020 and Wiskermann-2011.

		-	reatme	ent		Contro	ol.				Weig
Study		N	Mean		Ν	Mean	SD			Mean Difference [95%	
Chemoth	nerapy										- , ,
Alibhai, 2	015	56	36.5	7.6	14	35.8	7.6			0.70 [-3.75, 5.1	5] 3.83
Wehrle, 2	2019	14	33.9	7.1	8	37	6.7			-3.10 [-9.05, 2.8	5] 2.26
Heteroge	eneity: $\tau^2 = 0.04$, $I^2 = 0$).49%, H	² = 1.00)				-		-0.67 [-4.24, 2.9	1]
Test of θ_i	$= \theta_{i}$: Q(1) = 1.00, p =	0.32								-	-
Test of θ	= 0: z = -0.37, p = 0.	71									
Chemoth	nerapy and radiation	n									
May, 201	7	101	2	3.3	93	2.8	5.3			-0.80 [-2.05, 0.4	5] 21.02
Uster, 20	18	24	5.9	10.3	20	8.3	10.3			-2.40 [-8.51, 3.7	1] 2.15
Heteroge	eneity: $\tau^2 = 0.00$, $I^2 = 0$).00%, H	² = 1.00)				•		-0.86 [-2.09, 0.30	6]
Test of θ_i	$= \theta_i$: Q(1) = 0.25, p =	0.62									
Test of θ	= 0: z = -1.38, p = 0.	17									
нѕст											
Baumanr	ו, 2010	32	41	25	32	43	33			-2.00 [-16.34, 12.34	4] 0.41
DeFor, 20	007	51	32	20	49	35.5	10.4		_	-3.50 [-9.71, 2.7	1] 2.08
Dimeo, 1	997	33	13.6	2.2	37	15.2	3.6			-1.60 [-2.98, -0.22	2] 19.42
Hacker, 2	2017	33	16.7	4.2	34	18.1	5.5		-	-1.40 [-3.74, 0.94	4] 10.74
Jarden, 2	2009	21	34.7	5.6	21	35	6.1		—	-0.30 [-3.84, 3.24	4] 5.69
Pahl, 202	20	18	38	2.2	26	41	1.8			-3.00 [-4.23, -1.7]	7] 21.35
Potiaump	oai, 2020	17	12.9	4.3	15	11.7	4		-	1.20 [-1.68, 4.08	3] 7.94
Senn-Ma	lashonak, 2019	28	39	13.3	29	42	17.1			-3.00 [-10.94, 4.94	4] 1.3 ⁻
Wallek, 2	018	26	38.4	10.7	27	41.7	14			-3.30 [-9.99, 3.3	9] 1.8 ⁻
Heteroge	eneity: τ ² = 0.84, I ² = 3	32.09%, I	$+^2 = 1.4$	17				•		-1.67 [-2.83, -0.50	0]
Test of θ	$= \theta_i$: Q(8) = 9.16, p =	0.33								-	-
	= 0: z = -2.80, p = 0.0										
Overall								•		-1.47 [-2.39, -0.54	4]
Heteroge	eneity: $\tau^2 = 0.65$, $I^2 = 2$	28.13%, 1	$H^2 = 1.3$	39							
Test of θ_i	= θ _j : Q(12) = 12.79, μ	p = 0.38					_				
	= 0: z = -3.11, p = 0.0						Fa	vours Exercise	Favours Co	ntrol	
	oup differences: Q _b (2		n = 0.	81							
lest of gr		2) = 0.37	p = 0.	51							
	ffects REML model						-20	-10 0	0 10		
Pandom o											
meta regress	s i.Treatment, random(rem	1)									
meta regress Effect-size Effect		1)									
meta regress Effect-size Effect Std. andom-effects	s i.Treatment, random(rem: label: Mean diff. t size: _meta_es	1)	Number		-	13					
meta regress Effect-size Effect Std. andom-effects	s i.Treatment, random(rem: label: Mean diff. t size: _meta_es . err.: _meta_se	1)		l hetero tau	2 =	ty: .7431					
meta regress Effect-size Effect Std. andom-effects	s i.Treatment, random(rem: label: Mean diff. t size: _meta_es . err.: _meta_se	1)		l hetero tau I2 (%	2 =	ty: .7431 26.40					
meta regress Effect-size Effect Std. andom-effects	s i.Treatment, random(rem: label: Mean diff. t size: _meta_es . err.: _meta_se	1)	Residua R-sq	l hetero tau I2 (% H uared (%	i2 = 5) = 12 =	ty: .7431 26.40 1.36 0.00					
meta regress Effect-size Effect Std.	s i.Treatment, random(rem: label: Mean diff. t size: _meta_es . err.: _meta_se	1)	Residua	l hetero tau I2 (% H uared (% i2(2)	12 = 5) = 12 = 5) =	ty: .7431 26.40 1.36					
meta regress Effect-size Effect Std. andom-effects	s i.Treatment, random(rem: label: Mean diff. t size: _meta_es . err.: _meta_se	1) z P>	Residua R-sq Wald ch Prob >	l hetero tau I2 (% H uared (% i2(2)	12 = 5) = 12 = 5) = = (ty: .7431 26.40 1.36 0.00 0.54 0.7626					
meta regress Effect-size Effect Std. andom-effects ethod: REML meta_es Treatment	<pre>s i.Treatment, random(rem: label: Mean diff. t size: _meta_es err.: _meta_se s meta-regression Coefficient Std. err.</pre>	z P>	Residua R-sq Wald ch Prob >	1 hetero tau I2 (% H uared (% i2(2) chi2 95% conf	(2 = (5) = (2 = (5) = = (1) (5) = = (1) (5) = (1) (5) = (1) (5) = (1) (5) = (1) (5) = (1)	ty: .7431 26.40 1.36 0.00 0.54 0.7626 erval]					
meta regress Effect-size Effect Std. andom-effects ethod: REML meta_es	s i.Treatment, random(rem: label: Mean diff. t size: _meta_es . err.: _meta_se s meta-regression		Residua R-sq Wald ch Prob > z [911 -4	1 hetero tau I2 (% + uared (% i2(2) chi2	2 = 5) = 12 = 5) = = 5) = = 4.6	ty: .7431 26.40 1.36 0.00 0.54 0.7626					
meta regress Effect-size Effect Std. andom-effects ethod: REML meta_es Treatment 2	<pre>s i.Treatment, random(rem: label: Mean diff. size: _meta_es err.: _meta_se s meta-regression Coefficient Std. err. 2446497 2.177892</pre>	z P>	Residua R-sq Wald ch Prob > z [911 -4 629 -4	1 hetero tau I2 (% Huared (% i2(2) chi2 95% conf	2 = 5) = 12 = 5) = = 5) = = 4.6 2	ty: .7431 26.40 1.36 0.00 0.54 0.7626 erval] 023939					

Comment:

No substantial changes were detected, with the overall effect for the HSCT subgroup reducing from – 1.55 (-2.61 to -0.50) to -1.67 (-2.83 to -0.50), and for all studies, from -1.40 (-2.26 to -0.54) to -1.47 (-2.39 to -0.54). The overall effects for the subgroups Chemotherapy and Chemotherapy & radiation were unchanged. A meta-regression showed no significant association between Treatment and the effect size of Mean Difference (p=0.76)

Sensitivity Analysis 1b: Proportion of hospital admittance with three active controls removed i.e., Baumann-2011, Sana Mina-2020 and Wiskermann-2011.

Comment:

No sensitivity analysis undertaken as the three studies removed were not included in the metaanalysis for Difference in Proportions.

Sensitivity Analysis 2a: Days of hospitalization with a subgroup analysis for Supervision (Supervised, Partially Supervised, Unsupervised).

	٦	reatme	nt		Contro	ol							Weigh
Study	Ν	Mean	SD	Ν	Mean	SD			I	Mean Difl	ference	[95% CI]	(%)
Partially supervised													
DeFor, 2007	51	32	20	49	35.5	10.4		-		-3.50 [-9.71,	2.71]	1.82
Hacker, 2017	33	16.7	4.2	34	18.1	5.5	-	-		-1.40 [-3.74,	0.94]	9.7 [,]
May, 2017	101	2	3.3	93	2.8	5.3				-0.80 [-2.05,	0.45]	19.78
Potiaumpai, 2020	17	12.9	4.3	15	11.7	4	_	-		1.20 [-1.68,	4.08]	7.1
Santa Mina, 2020	11	27.4	3.8	12	28.6	3.5		-		-1.20 [-4.19,	1.79]	6.67
Wiskemann, 2011	40	45	17.3	40	43	25				2.00 [-7.42,	11.42]	0.8
Heterogeneity: $\tau^2 = 0.00$, I	$^{2} = 0.0$	00%, H ²	= 1.0	0						-0.75 [-1.71,	0.20]	
Test of $\theta_i = \theta_i$: Q(5) = 3.23										•			
Test of θ = 0: z = -1.54, p	= 0.12												
Supervised													
Alibhai, 2015	56	36.5	7.6	14	35.8	7.6				0.70 [-3.75,	5.15]	3.38
Baumann, 2010	32	41		32	43	33		<u> </u>		-2.00 [-	0.3
Baumann, 2011	17	56.1	20.7	16	51.4	16.4		-		-		17.40]	0.4
Dimeo, 1997	33	13.6	2.2	37	15.2	3.6				-1.60 [18.1
Jarden, 2009	21	34.7	5.6	21	35	6.1	-	-		-0.30 [-	5.0
Pahl, 2020	18	38	2.2	26	41	1.8				-3.00 [-	20.1
Senn-Malashonak, 2019	28	39	13.3	29	42	17.1				-3.00 [-	1.1
Uster, 2018	24	5.9	10.3	20	8.3	10.3				-2.40 [-	1.8
Wallek, 2018	26	38.4	10.7	27	41.7	14				-3.30 [-	1.5
Wehrle, 2019	14	33.9	7.1	8	37	6.7		_		-3.10 [-	1.9
Heterogeneity: $\tau^2 = 0.39$, I	² = 13	.29%, F	$f^2 = 1$.	15			•			-2.01 [-	
Test of $\theta_i = \theta_i$: Q(9) = 6.45	p = 0	.69								-		-	
Test of θ = 0: z = -3.61, p =	= 0.00												
Overall							•			-1.40 [-2.26,	-0.54]	
Heterogeneity: $\tau^2 = 0.57$, I	² = 22	.86%,⊦	$f^2 = 1.3$	30									
Test of $\theta_i = \theta_j$: Q(15) = 14.	34, p :	= 0.50				_	_		_				
Test of θ = 0: z = -3.18, p						Favo	irs Exercise	Favours (Contro	I			
Test of group differences:	Q₀(1)	= 2.87,	p = 0.	09									
						-20	-10 (0 10	20				
Random-effects REML mod	lel												
xi: meta regress i.Supervision, ra .Supervision _ISupervisi_1-2													
	(_isup	ervisi_i i	or sup~i	i==r di ·	cially sup	ervised omi	cceu)						
Effect-size label: Mean diff. Effect size: _meta_es Std. err.: _meta_se													
indom-effects meta-regression			umber of			.6							
ethod: REML		Re	esidual H	netero tau		7							
				I2 (% H		9							
			R-squar	red (%) = 76.3	2							
			ald chi2 rob > chi		= 3.5 = 0.061								
_meta_es Coefficient Std. er	r.	z P> z	[9	5% con	f. interva	1]							

Test of residual homogeneity: Q_res = chi2(14) = 9.68 Prob > Q_res = 0.7851

-1.34898 -.7473577

-2.760369 -1.800915

.0624081

.7201094 -1.87 0.061 .537539 -1.39 0.164

Comment:

_ISupervisi_2 _cons

The overall mean-difference for Supervised Treatment was 1.26 days less than the overall meandifference for Partially Supervised Treatment. A meta-regression showed no significant association between Type of Supervision and the effect size of Mean Difference (p=0.06)

Sensitivity Analysis 2b: Proportion of hospital admittance with a subgroup analysis for Supervision (Supervised, Partially Supervised, Unsupervised).

First Author, Year	Treatment Control Yes No Yes No	Difference in Proportions [95% CI]	Weight (%)
Partially supervised			
Hacker, 2017	3 30 8 26	-0.14 [-0.32, 0.03]	9.78
Mutrie, 2007	8 74 19 76	-0.10 [-0.21, 0.00]	27.63
Heterogeneity: $\tau^2 = 0.0$	00, $I^2 = 0.00\%$, $H^2 = 1.00$	-0.11 [-0.20, -0.02]	
Test of $\theta_i = \theta_j$: Q(1) = 0	0.17, p = 0.68		
Test of θ = 0: z = -2.51	, p = 0.01		
Supervised			
Alibhai, 2015	3 53 3 21	-0.07 [-0.22, 0.07]	13.95
Mijwel, 2020	6 119 8 49	-0.09 [-0.19, 0.01]	30.70
Heterogeneity: $\tau^2 = 0.0$	00, I ² = 0.01%, H ² = 1.00	-0.09 [-0.17, -0.00]	
Test of $\theta_i = \theta_j$: Q(1) = 0			
Test of θ = 0: z = -2.08	, p = 0.04		
Unsupervised			
Arrieta, 2019	21 64 29 71	-0.04 [-0.17, 0.08]	17.94
Heterogeneity: $\tau^2 = 0.0$	$100, I^2 = .\%, H^2 = .$	-0.04 [-0.17, 0.08]	
Test of $\theta_i = \theta_i$: Q(0) = 0	0.00, p = .		
Test of θ = 0: z = -0.66	, p = 0.51		
Overall Heterogeneity: $T^2 = 0$ ($00, I^2 = 0.01\%, H^2 = 1.00$	-0.09 [-0.14, -0.03]	
Test of $\theta_i = \theta_i$: Q(4) = 1			
Test of θ = 0: z = -3.20		Favours Exercise Favours Control	
Test of group difference	es: Q _b (2) = 0.80, p = 0.67		
		321 0 .1	
Random-effects REML	model		
xi: meta regress i.Supervisio .Supervision _ISupervisi_1		rtially supervised omitted)	
Effect-size label: Risk diff. Effect size: _meta_es Std. err.: _meta_se			
andom-effects meta-regression ethod: REML	I2 (⁹	ogeneity: u2 = 1.3e-08 %) = 0.00 H2 = 1.00	
_meta_es Coefficient St	d.err. z P> z [95% cor	nf. interval]	
ISupervisi_3 .0704586 .0	611882 0.45 0.652 0923409 792764 0.89 0.374 0849204 045136 -2.51 0.012 2018643	4 .2258375	

Test of residual homogeneity: Q_res = chi2(2) = 0.22 Prob > Q_res = 0.8950

Comment:

Whilst the overall effect size for Partially Supervised Exercise was found to be significant, Unsupervised Exercise wasn't and Supervised Exercise was borderline significant. A meta-regression showed no significant association between Type of Supervision and the effect size of Mean Difference (p=0.67)

Sensitivity Analysis 3a: Days of hospitalization with a subgroup analysis for Exercise Type (Aerobic, Mixed, Resistance, Vibration).

		Treatme	ent		Contr	ol			Weight
Study	Ν	Mean	SD	Ν	Mean	SD		Mean Difference [95% CI]	(%)
Aerobic									
DeFor, 2007	51	32	20	49	35.5	10.4		-3.50 [-9.71, 2.71]	1.84
Dimeo, 1997	33	13.6	2.2	37	15.2	3.6		-1.60 [-2.98, -0.22]	18.10
Potiaumpai, 2020	17	12.9	4.3	15	11.7	4		1.20 [-1.68, 4.08]	7.14
Wehrele-A, 2019	8	35	7.41	8	37	6.7		-2.00 [-8.92, 4.92]	1.50
Heterogeneity: $\tau^2 = 1.15$, I	² = 28	.64%, H	² = 1.40	C			•	-1.00 [-2.89, 0.90]	
Test of $\theta_i = \theta_i$: Q(3) = 3.57	. p = 0).31					•		
Test of θ = 0: z = -1.03, p	= 0.30)							
Mixed									
Alibhai, 2015	56	36.5	7.6	14	35.8	7.6		0.70 [-3.75, 5.15]	3.41
Baumann, 2010	32	41		32	43	33		-2.00 [-16.34, 12.34]	0.36
Baumann, 2011	17	56.1	20.7		51.4	16.4		4.70 [-8.00, 17.40]	0.46
Jarden, 2009	21	34.7	5.6		35	6.1		-0.30 [-3.84, 3.24]	5.08
May, 2017	101	2	3.3		2.8	5.3		-0.80 [-2.05, 0.45]	19.69
Santa Mina, 2020	11	27.4	3.8		28.6	3.5		-0.00 [-2.00, 0.40]	6.70
Senn-Malashonak, 2019	28	39	13.3		42	17.1		-3.00 [-10.94, 4.94]	1.15
Uster, 2018	20	5.9	10.3		8.3	10.3		-2.40 [-8.51, 3.71]	1.10
	24 26	38.4	10.3		41.7	10.3		. , .	
Wallek, 2018								. , .	1.60
Wiskemann, 2011	40 ² - 0 (45	17.3	40	43	25		2.00 [-7.42, 11.42]	0.83
Heterogeneity: $\tau^2 = 0.00$, I			= 1.00					-0.80 [-1.82, 0.22]	
Test of $\theta_i = \theta_j$: Q(9) = 2.76									
Test of θ = 0: z = -1.55, p	= 0.12								
Resistance									
Hacker, 2017	33	16.7	4.2	34	18.1	5.5		-1.40 [-3.74, 0.94]	9.74
Wehrele-B, 2019	6	39.67	14.07	8	37	6.7		2.67 [-9.51, 14.85]	0.50
Heterogeneity: $\tau^2 = 0.00$, I	² = 0.0	00%, H ²	= 1.00				•	-1.26 [-3.55, 1.04]	
Test of $\theta_i = \theta_j$: Q(1) = 0.41	, p = 0).52							
Test of θ = 0: z = -1.07, p	= 0.28	1							
Vibration									
Pahl, 2020	18	38	2.2	26	41	1.8		-3.00 [-4.23, -1.77]	20.02
Heterogeneity: $\tau^2 = 0.00$, I	² = .%	, H ² = .					→	-3.00 [-4.23, -1.77]	
Test of $\theta_i = \theta_i$: Q(0) = -0.00							•		
Test of θ = 0: z = -4.78, p									
,p									
Overall							•	-1.35 [-2.22, -0.49]	
Heterogeneity: $\tau^2 = 0.58$, I	² = 22	.16%, H	² = 1.28	3					
Test of $\theta_i = \theta_j$: Q(16) = 14.	55, p :	= 0.56				F			
Test of θ = 0: z = -3.06, p	= 0.00)				ravo	ours Exercise Favours Contr	UI	
Test of group differences:	Q _b (3)	= 7.80,	p = 0.0	5					
						-2	0 -10 0 10 20)	
Random-effects REML mod	del								

Sensitivity Analysis 3a (Continued): Days of hospitalization with a subgroup analysis for Exercise Type (Aerobic, Mixed, Resistance, Vibration).

. xi: meta regress i.Exercise, random(reml) i.Exercise __IExercise_1-4 (_IExercise_1 for Exe~e==Aerobic omitted)

			(_reaction	100_1 101	EXC CACTOD	ic omitteee
Effect-size	label: Mean d	liff.				
Effec	t size: _meta_	es				
	. err.: _meta_					
Random-effect	s meta-regress	ion		Num	ber of obs =	17
Method: REML	s meeu regress	12011			idual heterog	
neenour nene						= 4.0e-08
					I2 (%)	
						= 1.00
					R-squared (%)	
					d chi2(3) =	
					b > chi2 =	
_meta_es	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_IExercise_2	.3910145	.8040359	0.49	0.627	-1.184867	1.966896
IExercise 3	0612657	1.322898	-0.05	0.963	-2.654098	2.531566
_ickercise_s		0774004	-2.06	0.040	-3.525922	0862306
_IExercise_3	-1.806076	.0//4004				

Comment:

The subgroup analysis as shown by the forest plot indicates no substantial difference between the three types of exercise. This was supported by meta-regression which showed no significant association between Type of Exercise and the effect size of Mean Difference (p=0.0502)

Weight

First Aut	hor, Year	Treatme Yes N								Differen	ce in Propo	rtions [95% CI]	Weigl (%)
Aerobic	:												
Mijwel-A	, 2020	4 56	68	49			-				0.07 [-0.18	, 0.04]	19.64
Heteroge	eneity: $\tau^2 = 0$	0.00, I ² =	.%, H	² = .			-				0.07 [-0.18	, 0.04]	
Test of 0	$\theta_i = \theta_j$: Q(0) =	= 0.00, p	= .										
Test of θ	9 = 0: z = -1.3	31, p = 0).19										
Mixed													
Alibhai, 2	2015	3 53	33	21							0.07 [-0.22	, 0.07]	11.34
Arrieta, 2	2019	21 64	4 29	71			-			· -	0.04 [-0.17	, 0.08]	14.58
Mutrie, 2	2007	8 74	4 19	76				_		-	0.10 [-0.21	, 0.00]	22.4
Heteroge	eneity: $\tau^2 = 0$	0.00, I ² =	0.01%	%, H ² =	= 1.00					-	0.08 [-0.15	, -0.01]	
Test of θ	$\theta_i = \theta_j$: Q(2) =	= 0.51, p	= 0.77	7									
Test of θ) = 0: z = -2.	16, p = 0	0.03										
Resiste	nce												
Hacker,	2017	3 30	08	26						-	0.14 [-0.32	, 0.03]	7.94
Mijwel-B	8, 2020	2 63	38	49					_		-0.11 [-0.21	, -0.01]	24.0
Heteroge	eneity: $\tau^2 = 0$	0.00, I ² =	0.01%	%, H ² =	= 1.00				-		0.12 [-0.20	, -0.03]	
Test of θ	$\theta_i = \theta_j$: Q(1) =	= 0.12, p	= 0.73	3									
Test of θ) = 0: z = -2.0	69, p = 0	0.01										
Overall								•			0.09 [-0.14	, -0.04]	
Heteroge	eneity: $\tau^2 = 0$	0.00, I ² =	0.01%	%, Η ² =	= 1.00								
Test of θ	$\theta_i = \theta_j$: Q(5) =	= 1.25, p	= 0.94	4			Favour	e Evercie	E Eavo	urs Contro			
Test of θ	9 = 0: z = -3.0	60, p = 0	0.00				i avoui	3 LACIO	se ravoi				
Test of g	group differe	nces: Q _b	(2) = ().62, p	9 = 0.73					_			
						3	2	1	Ó	.1			
Random-	effects REM	L model											
xi: meta re .Exercise	gress i.Exercise _IExercise_			se_1 for	Exe~e==Aerob	ic omitted)						
Effec	e label: Risk di f t size: _meta_es L err.: _meta_se	5											
	s meta-regressic			Res Wal	ber of obs = idual heterog tau2 I2 (%) H2 R-squared (%) d chi2(2) = b > chi2 =	= 3.6e-07 = 0.01 = 1.00							
	Coefficient S	Std. err.	z	P> z	[95% conf.	interval]							
_meta_es					1340708	.1269653							
_meta_es IExercise_2 IExercise_3 _cons	0445402 .	.0665921 .0713464 .0561615	-0.05 -0.62 -1.31	0.957 0.532 0.190	1843767 1837586	.0952962							

Sensitivity Analysis 3b: Proportion of hospital admittance with a subgroup analysis for Exercise Type (Aerobic, Mixed, Resistance, Vibration).

Treatment Control

The subgroup analysis as shown by the forest plot indicates no substantial difference between the three types of exercise. This was (just) supported by meta-regression which showed no significant association between Type of Exercise and the effect size of Difference in Proportions (p=0.73)

Sensitivity Analysis 4: Days of hospitalization with a subgroup analysis for Adult (Yes=Adult, No=Child).

		Freatme			Contro				Weigh
Study	N	Mean	SD	Ν	Mean	SD	I	Mean Difference [95% CI]	(%)
Adult									
Alibhai, 2015	56	36.5	7.6	14	35.8	7.6		0.70 [-3.75, 5.15]	3.38
Baumann, 2010	32	41	25	32	43	33		-2.00 [-16.34, 12.34]	0.36
Baumann, 2011	17	56.1	20.7	16	51.4	16.4		4.70 [-8.00, 17.40]	0.45
DeFor, 2007	51	32	20	49	35.5	10.4		-3.50 [-9.71, 2.71]	1.82
Dimeo, 1997	33	13.6	2.2	37	15.2	3.6		-1.60 [-2.98, -0.22]	18.16
Hacker, 2017	33	16.7	4.2	34	18.1	5.5	-	-1.40 [-3.74, 0.94]	9.71
Jarden, 2009	21	34.7	5.6	21	35	6.1	-+-	-0.30 [-3.84, 3.24]	5.05
May, 2017	101	2	3.3	93	2.8	5.3		-0.80 [-2.05, 0.45]	19.78
Pahl, 2020	18	38	2.2	26	41	1.8		-3.00 [-4.23, -1.77]	20.11
Potiaumpai, 2020	17	12.9	4.3	15	11.7	4		1.20 [-1.68, 4.08]	7.11
Uster, 2018	24	5.9	10.3	20	8.3	10.3		-2.40 [-8.51, 3.71]	1.88
Wehrle, 2019	14	33.9	7.1	8	37	6.7		-3.10 [-9.05, 2.85]	1.98
Wiskemann, 2011	40	45	17.3	40	43	25		2.00 [-7.42, 11.42]	0.82
Heterogeneity: $\tau^2 = 0.73$,	$l^2 = 30$.34%, ⊦	$1^2 = 1.4$	44			•	-1.33 [-2.29, -0.37]	
Test of $\theta_i = \theta_i$: Q(12) = 13	3.90, p :	= 0.31							
Test of θ = 0: z = -2.72, p	o = 0.01								
Child									
Senn-Malashonak, 2019	28	39	13.3	29	42	17.1		-3.00 [-10.94, 4.94]	1.14
Wallek, 2018	26	38.4	10.7	27	41.7	14		-3.30 [-9.99, 3.39]	1.58
Heterogeneity: $\tau^2 = 0.00$,	$l^2 = 0.0$	00%, H ²	= 1.0	0			-	-3.18 [-8.29, 1.94]	
Test of $\theta_i = \theta_j$: Q(1) = 0.0	0, p = 0	.95							
Test of θ = 0: z = -1.22, p	o = 0.22	2							
Overall							•	-1.40 [-2.32, -0.48]	
Heterogeneity: $\tau^2 = 0.66$,	l ² = 25	.69%, H	H ² = 1.3	35					
Test of $\theta_i = \theta_i$: Q(14) = 14	1.29, p	= 0.43				_			
Test of θ = 0: z = -2.98, p	o = 0.00)				Fav	ours Exercise Favours Contro		
Test of group differences	. 0 (1)	- 0.49	0	40					
rest of group differences	. Q _b (1)	- 0.40,	ρ – υ.	49					
						-2	20 -10 0 10 20		
Random-effects REML me	odel								
xi: meta regress i.Adult, random .AdultIAdult_1-2	(reml) (_IAdu	lt_1 for /	Adult==Ad	dult o	mitted)				
Effect-size label: Mean diff. Effect size: _meta_es Std. err.: _meta_se									
andom-effects meta-regression ethod: REML			umber of esidual H	hetero tau I2 (%	geneity: 2 = .707	1 8			

0.00		1 (%)	squared	R				
0.46	_		chi2(1)					
0.4996		-	> chi2	Prob				
terval]	in	onf.	[95% c	P> z	z	Std. err.	Coefficient	_meta_es
.498487	3	35	-7.1752	0.500	-0.68	2.722938	-1.838374	IAdult_2
.384865	-	05	-2.2866	0.006	-2.75	.4851467	-1.335735	_cons

Test of residual homogeneity: Q_res = chi2(13) = 13.90 Prob > Q_res = 0.3808

Comment:

The subgroup analysis showed some variation been the overall effect size for studies involving adults (Mean Difference=-1.33 (-2.29 to -0.37)) compared to studies involving children (Mean Difference=-3.18 (-8.29 to 1.94)). However, a meta-regression showed no significant association between Adult (Yes, No) and the effect size of Mean Difference (p=0.50).

Sensitivity Analysis 5a: Days of hospitalization with a subgroup analysis for Duration (< 4 days, \geq 5 days)

	d	lays)											
	-	Treatme			Contro								Weigh
Study	N	Mean	SD	Ν	Mean	SD			I	Mean Diffe	rence [95	% CI]	(%)
At least 5 days													
Alibhai, 2015	56	36.5	7.6	14	35.8	7.6				0.70[-	-3.75, 5.	.15]	3.38
Baumann, 2010	32	41	25	32	43	33			_	-2.00 [-1	6.34, 12	.34]	0.36
Baumann, 2011	17	56.1	20.7	16	51.4	16.4		-		4.70 [-	-8.00, 17	.40]	0.45
DeFor, 2007	51	32	20	49	35.5	10.4		<u> </u>		-3.50 [-	-9.71, 2	.71]	1.82
Dimeo, 1997	33	13.6	2.2	37	15.2	3.6				-1.60 [-	-2.98, -0	.22]	18.16
Jarden, 2009	21	34.7	5.6	21	35	6.1		-		-0.30 [-	-3.84, 3.	.24]	5.05
May, 2017	101	2	3.3	93	2.8	5.3				-0.80 [-	-2.05, 0	.45]	19.78
Pahl, 2020	18	38	2.2	26	41	1.8				-3.00 [-	-4.23, -1.	.77]	20.11
Senn-Malashonak, 2019	28	39	13.3	29	42	17.1		<u> </u>		-3.00 [-1	0.94, 4	.94]	1.14
Wallek, 2018	26	38.4	10.7	27	41.7	14		+		-3.30 [-	-9.99, 3	.39]	1.58
Wiskemann, 2011	40	45	17.3	40	43	25		-	-	2.00 [-	7.42, 11	.42]	0.82
Heterogeneity: $\tau^2 = 0.65$, I	² = 26	.96%, H	$H^2 = 1.$	37			•	•		-1.59 [-	-2.63, -0	.55]	
Test of $\theta_i = \theta_j$: Q(10) = 10.	22, p	= 0.42											
Test of θ = 0: z = -2.99, p	= 0.00)											
Less than 4 days													
Hacker, 2017	33	16.7	4.2	34	18.1	5.5	-	-		-1.40 [-	-3.74, 0.	.94]	9.71
Potiaumpai, 2020	17	12.9	4.3	15	11.7	4	-	 		1.20 [-	-1.68, 4	.08]	7.11
Uster, 2018	24	5.9	10.3	20	8.3	10.3		<u> </u>		-2.40 [-	-8.51, 3.	.71]	1.88
Wehrle, 2019	14	33.9	7.1	8	37	6.7		-		-3.10 [-	-9.05, 2	.85]	1.98
Heterogeneity: $\tau^2 = 0.63$, I	² = 15	.09%, H	$+^2 = 1$.	18			•			-0.76 [-	-2.68, 1	.15]	
Test of $\theta_i = \theta_j$: Q(3) = 2.94	, p = ().40											
Test of θ = 0: z = -0.78, p	= 0.44	Ļ											
Overall							•			-1.40 [-	-2.32, -0.	.48]	
Heterogeneity: $\tau^2 = 0.66$, I	² = 25	.69%, H	$H^2 = 1.$	35						-		-	
Test of $\theta_i = \theta_i$: Q(14) = 14.	29, p	= 0.43											
Test of θ = 0: z = -2.98, p						Favou	rs Exercise	Favou	rs Contro	I			
Test of group differences:	Q₀(1)	= 0.55,	p = 0.	46		_							
						-20	-10	0 1	0 20				
Random-effects REML mod	del												
<pre>xi: meta regress i.Duration, rando .Duration _IDuration_1-2</pre>		ration 1 f	or Dur~n	At 1	east 5 day	s omitted)							
Effect-size label: Mean diff. Effect size: _meta_es Std. err.: _meta_se													
andom-effects meta-regression ethod: REML			umber of esidual	hetero tau I2 (%		7 5							
			R-squa ald chi2 rob > ch:	(1)		5							
_meta_es Coefficient Std. err	. :	z P> z			. interval	-							
IDuration_2 .8259886 1.116498 _cons -1.590524 .5322349				62307 33685	3.01428								
-													

Comment:

A subgroup analysis as displayed by the forest plot indicated no substantial variation between subgroups. A meta-regression showed no significant association between Duration and the effect size of Mean Difference (p=0.49)

Sensitivity Analysis 5b: Proportion of hospitalization with a subgroup analysis for Duration (< 4 days, \geq 5 days)

First Author, Year	Trea Yes	tment No		ntrol No			Difference in Proportions [95% CI]	Weight (%)
At least 5 days								
Alibhai, 2015	3	53	3	21			-0.07 [-0.22, 0.07]	13.95
Heterogeneity: τ^2 =	= 0.00, I	² = .%	, H ² =	÷.			-0.07 [-0.22, 0.07]	
Test of $\theta_i = \theta_j$: Q(0) = 0.00	, p = .						
Test of θ = 0: z = -	0.97, p	= 0.33						
Less than 4 days								
Arrieta, 2019	21	64	29	71	-		-0.04 [-0.17, 0.08]	17.94
Hacker, 2017	3	30	8	26 —			-0.14 [-0.32, 0.03]	9.78
Mijwel, 2020	6	119	8	49		_	-0.09 [-0.19, 0.01]	30.70
Mutrie, 2007	8	74	19	76		_	-0.10 [-0.21, 0.00]	27.63
Heterogeneity: τ^2 =	= 0.00, I	² = 0.0	1%,	$H^2 = 1.00$			-0.09 [-0.15, -0.03]	
Test of $\theta_i = \theta_j$: Q(3)) = 0.96	, p = 0	.81					
Test of $\theta = 0$: $z = -$	3.06, p	= 0.00						
Overall							-0.09 [-0.14, -0.03]	
Heterogeneity: τ^2 =	= 0.00, I	² = 0.0	1%,	$H^2 = 1.00$				
Test of $\theta_i = \theta_j$: Q(4) = 1.02	, p = 0	.91		-			
Test of $\theta = 0$: $z = -$	3.20, p	= 0.00			Favours	s Exercise	Favours Control	
Test of group diffe	ences.	0.(1)	- ^ ^	6 n = 0.80				
lest of group diffe	ences.	Q _b (1)	- 0.0	· · · · · · · · · · · · · · · · · · ·			<u> </u>	
				3	2	1	0.1	
Random-effects RE	ML mod	del						
xi: meta regress i.Durat Duration _IDurati			ation_	1 for Dur~n==At least 5 da	ys omitted)			
Effect-size label: Risk Effect size: _meta Std. err.: _meta	_es							
andom-effects meta-regres ethod: REML	sion			Number of obs = Residual heterogeneity: tau2 = 2.2e. I2 (%) = 0. H2 = 1. R-squared (%) = 57. Wald chi2(1) = 0.80 Prob > chi2 = 0.80	01 00 02 06			
_meta_es Coefficient	Std. err	`. z	P>	z [95% conf. interva	1]			
IDuration_20197704 _cons0714286	.079678 .0739114			8041759364 .13639 3342162923 .07343				
est of residual homogenei	ty: Q_res	= chi2(3) = 0	.96 Prob > Q_res = 0.81	.15			

Comment:

A subgroup analysis as displayed by the forest plot indicated no substantial variation between subgroups concerning point estimates, however, there was substantial greater precision for the subgroup of Less than 4 Days compared to the subgroup of At Least 5 days A meta-regression showed no significant association between Duration and the effect size of Duration (p=0.80).