Skip to main content
Log in

Verification of the heart rate threshold

  • Original Article
  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Abstract

Among the methods for determining anaerobic threshold (AT), the heart rate (HR) method seems to be the simplest. On the other hand, many conflicting results from comparing this method with others have been presented over the last 10 years. Therefore, the aim of this study was to compare the heart rate threshold (HRT) with the lactate turn point (LTP) —“second” break point of dependence of lactate (LA) to power output, ventilatory threshold (VT) and threshold determined by electromyography (EMGAT), all determined by the same exercise test and evaluated by the same computer algorithm. A group of 24 female students [mean age 20.5 (SD 1.6) years, maximal oxygen consumption 48.8 (SD 4.7) ml · kg−1 · min−1 performed an incremental exercise test on a cycle ergometer (modified Conconi test) starting with an initial power output (PO) of 40 W with intensity increments of 10 W · min−1 until the subjects were exhausted. The HRT, LTP and EMGAT determination was done by computer-aided break-point regression analysis from dependence of functional measures on PO. The same computer algorithm was used for VT determination from the relationship between ventilation (V) and oxygen uptake (\(\dot V\)O2) or carbon dioxide output (\(\dot V\)CO2). Nonsignificant differences were found between HRT [\(\dot V\)O2 35.2 (SD 4.2) ml · kg−1 · min−1; HR 170.8 (SD 5.5) beats min−1; LA 4.01 (SD 1.03) mmol · l−1; PO 2.27 (SD 0.33) W · kg−1 VT [\(\dot V\)O2 35.1 (SD 3.7) ml · kg−1 · min−1 HR 168.3 (SD 4.8) beats · min−1; LA 3.87 (SD 1:17) mmol · l−1; PO 2.22 (SD 0.27) W · kg−1 EMGAT [\(\dot V\)O235.6 (SD 4.1) ml · kg−1 · min−1 HR 171.0 (SD 5.4) beats · min−1; LA 4.11 (SD 0.98) mmol · l−1; PO 2.30 (SD 0.31) W · kg−1] and LTP [\(\dot V\)O2) 35.3 (SD 4.1) ml · kg−1 · min−1; HR 170.1 (SD 6.0) beats · min−1; LA 3.99 (SD 0.76) mmol · l−1; PO 2.27 (SD 0.29) W · kg−1]. Highly significant correlations (P < 0.01 in all cases) were found among all measurements made at threshold level in all the thresholds investigated. Correlation coefficients ranged in selected variables at different threshold levels from 0.842 to 0.872 in \(\dot V\)O2 measured in ml · kg−1 · min−1, from 0.784 to 0.912 for LA, from 0.648 to 0.857 for HR, and from 0.895 to 0.936 for PO measured in W · kg−1. These findings have led us to conclude that HRT could be used as an alternative method of determining anaerobic threshold in untrained subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baraldi E, Zanconato S, Santuz PA, Zacchello F (1989) A comparison of two noninvasive methods in the determination of the anaerobic threshold in children. Int J Sports Med 10:132–134

    Article  CAS  Google Scholar 

  • Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17:22–31

    CAS  PubMed  Google Scholar 

  • Bunc V, Heller J, Leso J, Novák J (1982) Determination of the individual anaerobic threshold. XXII World Congress on Sports Medicine. Int J Sports Med 3:11

    Google Scholar 

  • Bunc V, Sprynarava S, Heller J, Zdanowicz R (1984) Possibilities of application of anaerobic threshold in work physiology. II. Methods of determining anaerobic threshold (in Czech). Prac Lek 36:127–133

    Google Scholar 

  • Bunc V, Heller J, Leso J, Sprynarova S, Zdanowicz R (1987) Ventilatory threshold in various groups of highly trained athletes. Int J Sports Med 8:275–280

    Article  CAS  Google Scholar 

  • Bunc V, Heller J, Leso J (1988) Kinetics of heart rate responses to exercise. J Sports Sci 6:39–48

    Article  CAS  Google Scholar 

  • Bunc V, Heller J, Moravec P, Sprynarova S (1989) Ventilatory threshold and mechanical efficiency in endurance runners. Eur J Appl Physiol 58:693–698

    Article  CAS  Google Scholar 

  • Caiozzo VJ, Davis JA, Ellis JF, Azus JL, Vandagriff R, Prietto CA, McMaster WC (1982) A comparison of gas exchange indices used to detect anaerobic threshold. J Appl Physiol 53:1184–1189

    Article  CAS  Google Scholar 

  • Conconi F, Ferrari M, Ziglio P, Codeca L (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52:869–873

    Article  CAS  Google Scholar 

  • Connett RJ, Honig CR, Gayeski TEJ, Brooks GA (1990) Defining hypoxia: a system view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol 68:833–842

    Article  CAS  Google Scholar 

  • Davis HA, Bassett J, Hughes P, Gass GC (1983) Anaerobic threshold and lactate turnpoint. Eur J Appl Physiol 50:383–392

    Article  CAS  Google Scholar 

  • Davis JA (1985) Anaerobic threshold: review of the concept and direction for future research. Med Sci Sports Exerc 17:6–18

    CAS  PubMed  Google Scholar 

  • de Vries HA, Tichy MW, Housh TJ, Smyth KD, Tichy AM, Housh DJ (1987) A method for estimating physical working capacity at the fatigue threshold. Ergonomics 30:1195–1204

    Article  Google Scholar 

  • Francis KT, McClatchey PR, Sumsion JR, Hansen DE (1989) The relationship between anaerobic threshold and heart rate linearity during cycle ergometry. Eur J Appl Physiol 59:273–277

    Article  CAS  Google Scholar 

  • Gaisl G, Wiesspeiner G (1987) A noninvasive method of determining the anaerobic threshold in children. Int J Sports Med 8:41–44

    Google Scholar 

  • Hänninen O, Airaksinen O, Karipohja M (1989) On-line determination of anaerobic threshold with rms-EMG. In: Karvonen J (ed) The new method for ambulatory EMG in sports and occupational medicine. Mega Electronics, Kuopio, pp 34–36

    Google Scholar 

  • Heck H, Beckers K, Lammerschmidt W, Purin E, Hess G, Hollmann W (1989) Identification, objectivity and validity of Conconi threshold by cycle stress tests. Dtsch Z Sportmed 40:388–412

    Google Scholar 

  • Housh DJ, Housh TJ, Bange SM (1989) The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics 3:997–1004

    Article  Google Scholar 

  • Housh TJ, de Vries HA, Housh DJ, Tichy MW, Smyth KD, Tichy AM (1991) The relationship between critical power and the onset of blood lactate accumulation. J Sports Med Phys Fitness 31:31–36

    CAS  PubMed  Google Scholar 

  • Ivy JL, Withers RJ, Van Handel RJ, Elger DH, Costill DL (1980) Muscle respiratory capacity and fiber type as determinants of the anaerobic threshold. J Appl Physiol 48:523–527

    Article  CAS  Google Scholar 

  • Jacobs I, Schele R, Sjodin B (1985) Blood lactate vs. exhaustive exercise to evaluate aerobic fitness. Eur J Appl Physiol 54:151–155

    Article  CAS  Google Scholar 

  • Kindermann W, Simon G, Keul J (1979) The significance of the aerobic anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 42:25–34

    Article  CAS  Google Scholar 

  • Mader A, Heck H (1986) A theory of the metabolic origin of anaerobic threshold. Int J Sports Med 7:45–65

    Article  Google Scholar 

  • Mahon AD, Vaccaro P (1991) Can the point of deflection from linearity of heart rate determine ventilatory threshold in children? Pediatr Exerc Sci 3:256–262

    Article  Google Scholar 

  • Mateika JH, Duffin J (1994) Coincidental changes in ventilation and electromyographic activity during consecutive incremental exercise tests. Eur J Appl Physiol 68:54–61

    Article  CAS  Google Scholar 

  • Moritani T, de Vries HA (1980) Anaerobic threshold determination by surface electromyography. Med Sci Sports Exerc 12:2

    Google Scholar 

  • Moritani T, Muro M (1987) Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur J Appl Physiol 56:260–265

    Article  CAS  Google Scholar 

  • Moritani T, Berry MI, Barach DW, Nakamura E (1987) Gas exchange parameters, muscle blood flow and electromechanical properties of the plantar flexors. Eur J Appl Physiol 56:30–37

    Article  CAS  Google Scholar 

  • Perini R, Orizio C, Gamba A, Veicsteinas A (1993) Kinetics of heart rate and catecholamines during exercise in humans. Eur J Appl Physiol 66:500–506

    Article  CAS  Google Scholar 

  • Pokan R, Hofmann P, Preidler K, Leitner H, Dusleag J, Eber B, Schwaberger G, Füger GF, Klein W (1993) Correlation between inflection of heart rate/work performance curve and myocardial function in exhausting cycle ergometer exercise. Eur J Appl Physiol 67:385–388

    Article  CAS  Google Scholar 

  • Ribeiro JP, Fielding RA, Hughes V, Black A, Bochese MA, Knuttgen HG (1985) Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 6:220–224

    Article  CAS  Google Scholar 

  • Ribeiro JP, Hughes V, Fielding RA, Holden W, Evans W, Knuttgen HG (1986) Metabolic and ventilatory responses to steady state exercise relative to lactate threshold. Eur J Appl Physiol 55:215–221

    Article  CAS  Google Scholar 

  • Tokmakidis SP, Leger L (1992) Comparison of mathematically determined blood lactate and heart rate “threshold” points and relationship with performance. Eur J Appl Physiol 64:309–317

    Article  CAS  Google Scholar 

  • Viitasalo JT, Luhtanen P, Rahkila P, Rusko H (1985) Electromyographic activity related to anaerobic threshold in ergometer cycling. Acta Physiol Scand 124:844–852

    Article  Google Scholar 

  • Wasserman K (1984) The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis 129 [Suppl]:S35-S40

    Article  CAS  Google Scholar 

  • Wasserman K, McIlroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844–852

    Article  CAS  Google Scholar 

  • Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and gas exchange during exercise. J Appl Physiol 35:236–243

    Article  CAS  Google Scholar 

  • Yamamoto Y, Miyashita M, Hughson RL, Tamura S, Shinohara M, Mutoh Y (1991) The ventilatory threshold gives maximal lactate steady state. Eur J Appl Physiol 63:55–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunc, V., Hofmann, P., Leitner, H. et al. Verification of the heart rate threshold. Eur J Appl Physiol 70, 263–269 (1995). https://doi.org/10.1007/BF00238574

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238574

Key words

Navigation