Skip to main content
Log in

Advances in processing of surface myoelectric signals: Part 1

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

During sustained voluntary or electrically elicted muscle contractions the surface myoelectric signal is nonstationary and it undergoes progressive changes reflecting the modifications of the motor unit action potentials and their propagation velocity. In particular, during sustained electrical stimulation, the evoked signals show progressive amplitude, time scaling and shape modification. The quantitative evaluation of these changes is important for non-invasive muscle characterisation and may be performed in either the time or frequency domain using parametric and nonparametric spectral analysis as well as alternative methodologies. The paper introduces the detection techniques, reviews and compares the methods of spectral estimation based on FFT and autoregressive models, and discusses their applications and limitations in extracting information from the surface myoelectric signal with particular regard to myoelectric manifestations of localised muscle fatigue during sustained contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akaike, H. (1974): ‘A flew look at the statistical model identification,’IEEE Trans. Autom. Control,19, pp. 716–723

    Article  MATH  MathSciNet  Google Scholar 

  • Badylak, S. F., Stevens, L., Janas W., Gray, M. H., Geddes, L. A., andVoorhees, W. D. (1989): ‘Cardiac assistance with electrically stimulated skeletal muscle’,Med. Biol. Eng. Comput.,27, pp. 159–165

    Article  Google Scholar 

  • Brody, L., Pollock, M., Roy, S., De Luca, C., andCelli, B. (1991): ‘pH induced effects on median frequency and conduction velocity of the myoelectric signal’,J. Appl. Physiol.,71, pp. 1878–1885

    Google Scholar 

  • Broman, H., Bilotto, G., andDe Luca, C. J. (1985a): ‘A note on the non-invasive estimation of muscle fiber conduction velocity’,IEEE Trans. Biomed. Eng.,32, 341–345

    Google Scholar 

  • Broman, H., Bilotto, G., andDe Luca, C. J. (1985): ‘Myoelectric signal conduction velocity and spectral parameters: influence of force and time’,J. Appl. Physiol.,8, pp. 1428–1435

    Google Scholar 

  • Burg, J. P. (1975): ‘Maximum entropy spectral analysis’, PhD dissertation, Department of Geophysics, Stanford University, USA

    Google Scholar 

  • Challis, R. E., andKitney, R. I. (1991). ‘Biomedical signal processing (in four parts)—Part 3: The power spectrum and coherence function’,Med. Biol. Eng. Comp.,29, pp. 225–241

    Article  Google Scholar 

  • De Luca, C. J. (1984): ‘Myoelectric manifestations of localized muscular fatigue in humans’,CRC Crit. Rev. Biomed. Eng.,11, pp. 251–279

    Google Scholar 

  • Diemont, B., andMaranzana, M. (1987): ‘Spectral analysis of EMG data: identification methods versus FFT’. Politecnico di Milano, Italy, internal report No. 87-022

    Google Scholar 

  • Duchene, J., andGoubel, F. (1993): ‘Surface electromyogram during voluntary contraction: processing tools and relations to physiological events’,CRC Crit. Rev. Biomed. Eng.,21, pp. 313–397

    Google Scholar 

  • Franklin, D., Lo Conte, R. L., Fan, Y., andMerletti, R. (1993): ‘Scaling factors in electrically evoked myoelectric signals: comparison of estimation methods’.Proceedings of the Ljubljana FES Conference, pp. 119–122

  • Gambardella, G., (1968): ‘Time scaling and short-time spectral analysis,J. Acoust. Soc. Am.,44, pp. 1745–1747

    Article  Google Scholar 

  • Gans, B., andKraft, G. H. (1981): ‘M-response quantification: a technique,Arch. Phys. Med. Rehab.,62, pp. 376–379

    Google Scholar 

  • Hagg, G. M. (1992): ‘Interpretation of the EMG spectral alterations and alteration indexes at sustained contractions’,J. Appl. Physiol.,73, 1211–1217

    Google Scholar 

  • Hermens, H., Boom, K., andZilvold, G. (1984a): ‘The clinical use of surface EMG’,J. Electromyogr. Clin. Neurophys.,24, pp. 243–265

    Google Scholar 

  • Hermens, H., Boom, K., andZilvold, G. (1984b): ‘The clinical use of surface EMG with hemiplegic patients.’8th International Symposium on External Control of Human Extremities, Dubrovnik, pp. 493–499

  • Hultman, E., andSjoholm, H. (1983): ‘Electromyogram, force and relaxation time during and after continuous electrical stimulation of human skeletal muscle in situ,J. Physiol.,339, pp. 33–40

    Google Scholar 

  • Inbar, G. F., Allin, J., andKranz, H. (1987): ‘Surface EMG spectral changes with muscle length’,Med. Biol. Eng. Comp.,25, pp. 683–689

    Article  Google Scholar 

  • Knaflitz, M., Merletti, R., andDe Luca, C. J. (1990): ‘Inference of motor unit recruitment order in voluntary and electrically elicited contractions,J. Appl. Physiol.,68, pp. 1657–1667

    Google Scholar 

  • Kostov, K., Kossev, A., andGydikov, A. (1984): ‘Utilization of the stimulated electromyogram for estimation of the functional state of the muscles,Electromyog. Clin. Neurophys.,24, pp. 387–405

    Google Scholar 

  • Kralj, A., andBajd, T. (1989): ‘Functional electrical stimulation: standing and walking after spinal cord injury’, (CRC Press, Boca Raton)

    Google Scholar 

  • Kranz, H., Williams, A. M., Cassell, J., Caddy, D. J., andSilberstein, R. B. (1983): ‘Factors determining the frequency content of the electromyogram’,J. Appl. Physiol. Respirat. Environ. Exercise Physiol.,55, pp. 392–399

    Google Scholar 

  • Lindstrom L., andMagnusson, R. (1977): ‘Interpretation of myoelectric power spectra: a model and its applications’,Proc. IEEE,65, pp. 653–662

    Google Scholar 

  • Linssen, W., Stegman, D., Joosten, E., Vant'hof, M., Binkhorst, R., andNoterman, S. S. (1993): ‘Variability and interrelationship of surface EMG parameters during local muscle fatigue’,Muscle Nerve,16, pp. 849–856

    Article  Google Scholar 

  • Malek, A. M., andMark, R. G. (1989): ‘Functional electrical stimulation of the latissimus dorsi muscle for use in cardiac assist’,IEEE Trans. Biomed. Eng.,36, pp. 781–790

    Article  Google Scholar 

  • Maranzana, M., andFabbro, M. (1981): ‘Autoregressive description of EMG signals.’ISEK Far East Regional Meeting, Tokyo, Japan

  • Merletti, R., Castagno, R., Saracco, C. Prato, G., Pisani, R. (1985): ‘Proprieta' e ripetibilita' di musura di parametri spetrali del segnale EMG cutaneo in soggetti normali’,Rassegna di bioingegneria,10, pp. 83–96 (in Italian)

    Google Scholar 

  • Merletti, R., Balestra, G., andKnaflitz, M. (1989): ‘Effect of FFT based algorithms on estimation of myoelectric signal spectral parameters.11th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Seattle, pp. 1022–1023

  • Merletti, R., Knaflitz, M., andDeLuca C. J. (1990): ‘Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions’,J. Appl. Physiol.,69, pp. 1810–1820

    Google Scholar 

  • Merletti, R., Knaflitz, M., andDeLuca, C. J. (1992): ‘Electrically evoked myoelectric signals’,CRC Critical Reviews in Biomedical Engineering,19, pp. 293–340

    Google Scholar 

  • Merletti, R., Lo Conte, L. R., Cisari, C., andActis, M. V. (1992): ‘Age related changes in surface myoelectric signals’,Scand. J. Rehab. Med.,24, pp. 25–36

    Google Scholar 

  • Merletti R.,, Sathyan, D., DeLuca, C. J., andKnaflitz, M. (1992): ‘Electrically evoked myoelectric signals of back muscles: effect of side dominance’.Proceedings of the 14th Annual Conference of the IEEE Engineering in Medicine and Biology Society, Paris, pp. 1324–1325

  • Merletti, R., Lo Conte, L. R., Cisari, C., andMassazza, U. (1993): ‘Effect of joint position on electrically evoked surface myoelectric signals of the tibialis anterior muscle’,Arch. Phys. Med. Rehab,74, pp. 501–506

    Article  Google Scholar 

  • Mills, K. R. (1982): ‘Power spectral analysis of EMG and compound muscle action potential during muscle fatigue and recovery’,J. Physiol.,326, pp. 401–410

    Google Scholar 

  • Paiss, O., andInbar, G. (1987): ‘Autoregressive modelling of surface EMG and its spectrum with application to fatigue’,IEEE Trans. Biomed. Eng.,34, pp. 761–770

    Google Scholar 

  • Papoulis, A. (1965): ‘Probability, random variables, and stochastic processes’ (McGraw-Hill, New York)

    MATH  Google Scholar 

  • Rix, H., andMalenge, J. P. (1980): ‘Detecting small variations in shape’,IEEE Trans. Systems Man Cybern.,10, pp. 90–96

    Article  MathSciNet  Google Scholar 

  • Sadoyama, T., Masuda, T., Miyata, H., andKatsuta, S. (1988): ‘Fiber conduction velocity and fiber composition in human vastus lateralis’,Eur. J. Appl. Physiol.,57, pp. 767–771

    Article  Google Scholar 

  • Saltzberg, B. (1986): ‘An efficient formula for estimating the generalized moments of the power spectral density (PSD) without computing the Fourier transform’,IEEE Trans. on Biomed. Eng.,33, pp. 1134–1136

    Google Scholar 

  • Shwedyk, E., Balasubramanian, R., andScott, R. (1977): ‘A non-stationary model for the electromyogram’,IEEE Trans. Biomed. Eng.,24, pp. 417–424

    Google Scholar 

  • Westbury, J. R., andShaughnessy, T. (1987): ‘Association between spectral representation of the surface electromyogram and fiber type distribution and size in human masseter muscle’,Electromyogr. Clin. Neurophysiol.,27, pp. 427–453

    Google Scholar 

  • Whitlock, T. L., Ewins, D. J., Taylor, P. N., Swain, L. D., andLipcztnski, R. T. (1988): ‘Spectral analysis of stimulated muscle EMGs to provide feedback in closed-loop FES systems’in Wallinga, Boom, de Vries (Eds.): ‘Electrophysiological kinesiology’ pp. 121–124

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merletti, R., Lo Conte, L.R. Advances in processing of surface myoelectric signals: Part 1. Med. Biol. Eng. Comput. 33, 362–372 (1995). https://doi.org/10.1007/BF02510518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510518

Keywords

Navigation