Skip to main content

Advertisement

Log in

Abstract

Maximal cardiac output is reduced in severe acute hypoxia but also in chronic hypoxia by mechanisms that remain poorly understood. In theory, the reduction of maximal cardiac output could result from: (1) a regulatory response from the central nervous system, (2) reduction of maximal pumping capacity of the heart due to insufficient coronary oxygen delivery prior to the achievement of the normoxic maximal cardiac output, or (3) reduced central command. In this review, we focus on the effects that acute and chronic hypoxia have on the pumping capacity of the heart, particularly on myocardial contractility and the molecular responses elicited by acute and chronic hypoxia in the cardiac myocytes. Special emphasis is put on the cardioprotective effects of chronic hypoxia. (Part of a multi-author review.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Calbet JA (2000) Oxygen tension and content in the regulation of limb blood flow. Acta Physiol Scand 168:465–472

    Article  PubMed  CAS  Google Scholar 

  2. Calbet JA, Lundby C, Koskolou M, Boushel R (2006) Importance of hemoglobin concentration to exercise: acute manipulations. Respir Physiol Neurobiol 151:132–140

    Article  PubMed  CAS  Google Scholar 

  3. Koskolou MD, Roach RC, Calbet JA, Radegran G, Saltin B (1997) Cardiovascular responses to dynamic exercise with acute anemia in humans. Am J Physiol 273:H1787–H1793

    PubMed  CAS  Google Scholar 

  4. Ekblom B, Goldbarg AN, Gullbring B (1972) Response to exercise after blood loss and reinfusion. J Appl Physiol 33:175–180

    PubMed  CAS  Google Scholar 

  5. Ekblom B, Huot R, Stein EM, Thorstensson AT (1975) Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 39:71–75

    PubMed  CAS  Google Scholar 

  6. Ekblom B, Huot R (1972) Response to submaximal and maximal exercise at different levels of carboxyhemoglobin. Acta Physiol Scand 86:474–482

    Article  PubMed  CAS  Google Scholar 

  7. Ekblom B, Wilson G, Astrand PO (1976) Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 40:379–383

    PubMed  CAS  Google Scholar 

  8. Turner DL, Hoppeler H, Noti C, Gurtner HP, Gerber H, Schena F, Kayser B, Ferretti G (1993) Limitations to VO2max in humans after blood retransfusion. Respir Physiol 92:329–341

    Article  PubMed  CAS  Google Scholar 

  9. Lundby C, Robach P, Boushel R, Thomsen JJ, Rasmussen P, Koskolou M, Calbet JA (2008) Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport? J Appl Physiol 105:581–587

    Article  PubMed  CAS  Google Scholar 

  10. Neubauer B, Tetzlaff K, Staschen CM, Bettinghausen E (2001) Cardiac output changes during hyperbaric hyperoxia. Int Arch Occup Environ Health 74:119–122

    Article  PubMed  CAS  Google Scholar 

  11. Saltin B, Calbet JA (2006) Point: in health and in a normoxic environment, VO2max is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:744–745

    Article  PubMed  Google Scholar 

  12. Calbet JA, Jensen-Urstad M, Van Hall G, Holmberg HC, Rosdahl H, Saltin B (2004) Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol 558:319–331

    Article  PubMed  CAS  Google Scholar 

  13. Calbet JA, Gonzalez-Alonso J, Helge JW, Sondergaard H, Munch-Andersen T, Boushel R, Saltin B (2007) Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol 103:969–978

    Article  PubMed  Google Scholar 

  14. Gonzalez-Alonso J, Calbet JA (2003) Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 107:824–830

    Article  PubMed  Google Scholar 

  15. Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Determinants of maximal oxygen uptake in severe acute hypoxia. Am J Physiol Regul Integr Comp Physiol 284:R291–R303

    PubMed  CAS  Google Scholar 

  16. Calbet JA, Robach P, Lundby C, Boushel R (2008) Is pulmonary gas exchange during exercise in hypoxia impaired with the increase of cardiac output? Appl Physiol Nutr Metab 33:593–600

    Article  PubMed  CAS  Google Scholar 

  17. Lundby C, Calbet JA, van Hall G, Saltin B, Sander M (2004) Pulmonary gas exchange at maximal exercise in Danish lowlanders during eight weeks of acclimatization to 4,100 m and in high-altitude Aymara natives. Am J Physiol Regul Integr Comp Physiol 287:R1202–R1208

    PubMed  CAS  Google Scholar 

  18. Wagner PD, Araoz M, Boushel R, Calbet JA, Jessen B, Radegran G, Spielvogel H, Sondegaard H, Wagner H, Saltin B (2002) Pulmonary gas exchange and acid–base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. J Appl Physiol 92:1393–1400

    PubMed  Google Scholar 

  19. Beall CM, Brittenham GM, Strohl KP, Blangero J, Williams-Blangero S, Goldstein MC, Decker MJ, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C (1998) Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol 106:385–400

    Article  PubMed  CAS  Google Scholar 

  20. Calbet JA (2003) Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol 551:379–386

    Article  PubMed  CAS  Google Scholar 

  21. Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Why is VO2max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J Physiol Regul Integr Comp Physiol 284:R304–R316

    PubMed  CAS  Google Scholar 

  22. Hansen J, Sander M (2003) Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol 546:921–929

    Article  PubMed  CAS  Google Scholar 

  23. Lundby C, Boushel R, Robach P, Moller K, Saltin B, Calbet JA (2008) During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level. J Physiol 586:123–130

    Article  PubMed  CAS  Google Scholar 

  24. Calbet JA, Radegran G, Boushel R, Sondergaard H, Saltin B, Wagner PD (2002) Effect of blood haemoglobin concentration on VO2max and cardiovascular function in lowlanders acclimatised to 5,260 m. J Physiol 545:715–728

    Article  PubMed  CAS  Google Scholar 

  25. Calbet JA, Radegran G, Boushel R, Saltin B (2009) On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol 587:477–490

    Article  PubMed  CAS  Google Scholar 

  26. Stenberg J, Ekblom B, Messin R (1966) Hemodynamic response to work at simulated altitude, 4,000 m. J Appl Physiol 21:1589–1594

    PubMed  CAS  Google Scholar 

  27. Pugh LGCE (1964) Cardiac output in muscular exercise at 5,800 m (19,000 ft). J Appl Physiol 19:441–447

    Google Scholar 

  28. Sproule BJ, Mitchell JH, Miller WF (1960) Cardiopulmonary physiological responses to heavy exercise in patients with anemia. J Clin Invest 39:378–388

    Article  PubMed  CAS  Google Scholar 

  29. Reis DJ, Golanov EV, Ruggiero DA, Sun MK (1994) Sympatho-excitatory neurons of the rostral ventrolateral medulla are oxygen sensors and essential elements in the tonic and reflex control of the systemic and cerebral circulations. J Hypertens Suppl 12:S159–S180

    PubMed  CAS  Google Scholar 

  30. Calbet JA, Lundby C (2009) Air to muscle O2 delivery during exercise at altitude. High Alt Med Biol 10:123–134

    Article  PubMed  Google Scholar 

  31. Piiper J, Scheid P (1981) Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia. Respir Physiol 46:193–208

    Article  PubMed  CAS  Google Scholar 

  32. Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Physiol 87:1997–2006

    PubMed  CAS  Google Scholar 

  33. Johnson RLJ (1977) Oxygen transport. In: Willerson JT, Sanders CA (eds) Clinical cardiology. Grune & Stratton, New York, pp 74–84

    Google Scholar 

  34. Hopkins SR (2006) Exercise induced arterial hypoxemia: the role of ventilation-perfusion inequality and pulmonary diffusion limitation. Adv Exp Med Biol 588:17–30

    Article  PubMed  Google Scholar 

  35. Zanzinger J, Czachurski J, Seller H (1998) Nitric oxide in the ventrolateral medulla regulates sympathetic responses to systemic hypoxia in pigs. Am J Physiol 275:R33–R39

    PubMed  CAS  Google Scholar 

  36. Sun MK, Reis DJ (1994) Central neural mechanisms mediating excitation of sympathetic neurons by hypoxia. Prog Neurobiol 44:197–219

    Article  PubMed  CAS  Google Scholar 

  37. Alexander JK, Hartley LH, Modelski M, Grover RF (1967) Reduction of stroke volume during exercise in man following ascent to 3,100 m altitude. J Appl Physiol 23:849–858

    PubMed  CAS  Google Scholar 

  38. Janicki JS, Sheriff DD, Robotham JL, Wise RA (1996) Cardiac output during exercise: contributions of the cardiac, circulatory, and respiratory systems. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. Exercise: regulation and integration of multiple systems. American Physiological Society, Bethesda, MD, pp 649–704

    Google Scholar 

  39. Barendsen GJ, van den Berg JW (1984) Venous capacity, venous refill time and the effectiveness of the calf muscle pump in normal subjects. Angiology 35:163–172

    Article  PubMed  CAS  Google Scholar 

  40. Disler DG, Cohen MS, Krebs DE, Roy SH, Rosenthal DI (1995) Dynamic evaluation of exercising leg muscle in healthy subjects with echo planar MR imaging: work rate and total work determine rate of T2 change. J Magn Reson Imaging 5:588–593

    Article  PubMed  CAS  Google Scholar 

  41. Sheriff DD, Van Bibber R (1998) Flow-generating capability of the isolated skeletal muscle pump. Am J Physiol 274:H1502–H1508

    PubMed  CAS  Google Scholar 

  42. Sheriff D (2005) Point: the muscle pump raises muscle blood flow during locomotion. J Appl Physiol 99:371–372 (discussion 374–375)

    Article  PubMed  Google Scholar 

  43. Essop MF (2007) Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol 584:715–726

    Article  PubMed  CAS  Google Scholar 

  44. Williams RS, Benjamin IJ (2000) Protective responses in the ischemic myocardium. J Clin Invest 106:813–818

    Article  PubMed  CAS  Google Scholar 

  45. McClintock DS, Santore MT, Lee VY, Brunelle J, Budinger GR, Zong WX, Thompson CB, Hay N, Chandel NS (2002) Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol 22:94–104

    Article  PubMed  CAS  Google Scholar 

  46. Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250:C663–C675

    PubMed  CAS  Google Scholar 

  47. Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 263:2712–2718

    PubMed  CAS  Google Scholar 

  48. Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283:L922–L931

    PubMed  CAS  Google Scholar 

  49. Chandel NS, Vander Heiden MG, Thompson CB, Schumacker PT (2000) Redox regulation of p53 during hypoxia. Oncogene 19:3840–3848

    Article  PubMed  CAS  Google Scholar 

  50. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88:5680–5684

    Article  PubMed  CAS  Google Scholar 

  51. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    PubMed  CAS  Google Scholar 

  52. Semenza GL, Shimoda LA, Prabhakar NR (2006) Regulation of gene expression by HIF-1. Novartis Found Symp 272:2–8 (discussion 8–14, 33–36)

    Article  PubMed  CAS  Google Scholar 

  53. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  CAS  Google Scholar 

  54. Semenza GL (2007) Regulation of tissue perfusion in mammals by hypoxia-inducible factor 1. Exp Physiol 92:988–991

    Article  PubMed  CAS  Google Scholar 

  55. Opie LH, Lopaschuk GD (2004) Fuels: aerobic and anaerobic metabolism. In: Weinberg RW, Bersin J, Aversa F (eds) Heart physiology. From cell to circulation. Lippincot Williams & Wilkins, Philadelphia, pp 306–354

    Google Scholar 

  56. Takaoka H, Takeuchi M, Odake M, Yokoyama M (1992) Assessment of myocardial oxygen consumption (VO2) and systolic pressure–volume area (PVA) in human hearts. Eur Heart J 13(Suppl E):85–90

    PubMed  Google Scholar 

  57. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  PubMed  CAS  Google Scholar 

  58. Messer JV, Wagman RJ, Levine HJ, Neill WA, Krasnow N, Gorlin R (1962) Patterns of human myocardial oxygen extraction during rest and exercise. J Clin Invest 41:725–742

    Article  PubMed  CAS  Google Scholar 

  59. Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 32:516–522

    PubMed  CAS  Google Scholar 

  60. Ross J Jr (1991) Myocardial perfusion–contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083

    PubMed  Google Scholar 

  61. Braga VA, Zoccal DB, Soriano RN, Antunes VR, Paton JF, Machado BH, Nalivaiko E (2007) Activation of peripheral chemoreceptors causes positive inotropic effects in a working heart–brainstem preparation of the rat. Clin Exp Pharmacol Physiol 34:1156–1159

    PubMed  CAS  Google Scholar 

  62. Braga VA, Soriano RN, Braccialli AL, de Paula PM, Bonagamba LG, Paton JF, Machado BH (2007) Involvement of l-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol 581:1129–1145

    Article  PubMed  CAS  Google Scholar 

  63. Layland J, Grieve DJ, Cave AC, Sparks E, Solaro RJ, Shah AM (2004) Essential role of troponin I in the positive inotropic response to isoprenaline in mouse hearts contracting auxotonically. J Physiol 556:835–847

    Article  PubMed  CAS  Google Scholar 

  64. Hoh JF, Rossmanith GH, Kwan LJ, Hamilton AM (1988) Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis. Circ Res 62:452–461

    PubMed  CAS  Google Scholar 

  65. Kentish JC, McCloskey DT, Layland J, Palmer S, Leiden JM, Martin AF, Solaro RJ (2001) Phosphorylation of troponin I by protein kinase a accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res 88:1059–1065

    Article  PubMed  CAS  Google Scholar 

  66. Herron TJ, Korte FS, McDonald KS (2001) Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes. Circ Res 89:1184–1190

    Article  PubMed  CAS  Google Scholar 

  67. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118:119–125

    Article  PubMed  CAS  Google Scholar 

  68. Chen MM, Ashley EA, Deng DX, Tsalenko A, Deng A, Tabibiazar R, Ben-Dor A, Fenster B, Yang E, King JY, Fowler M, Robbins R, Johnson FL, Bruhn L, McDonagh T, Dargie H, Yakhini Z, Tsao PS, Quertermous T (2003) Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108:1432–1439

    Article  PubMed  CAS  Google Scholar 

  69. Kleinz MJ, Skepper JN, Davenport AP (2005) Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept 126:233–240

    Article  PubMed  CAS  Google Scholar 

  70. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74:34–41

    Article  PubMed  CAS  Google Scholar 

  71. Sheikh AY, Chun HJ, Glassford AJ, Kundu RK, Kutschka I, Ardigo D, Hendry SL, Wagner RA, Chen MM, Ali ZA, Yue P, Huynh DT, Connolly AJ, Pelletier MP, Tsao PS, Robbins RC, Quertermous T (2008) In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am J Physiol Heart Circ Physiol 294:H88–H98

    Article  PubMed  CAS  Google Scholar 

  72. Ronkainen VP, Ronkainen JJ, Hanninen SL, Leskinen H, Ruas JL, Pereira T, Poellinger L, Vuolteenaho O, Tavi P (2007) Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 21:1821–1830

    Article  PubMed  CAS  Google Scholar 

  73. Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91:434–440

    Article  PubMed  CAS  Google Scholar 

  74. Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, Soppa GK, Marczin N, Szokodi I, Yacoub MH, Terracciano CM (2007) Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun 357:889–895

    Article  PubMed  CAS  Google Scholar 

  75. Dai T, Ramirez-Correa G, Gao WD (2006) Apelin increases contractility in failing cardiac muscle. Eur J Pharmacol 553:222–228

    Article  PubMed  CAS  Google Scholar 

  76. Cox CM, D’Agostino SL, Miller MK, Heimark RL, Krieg PA (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296:177–189

    Article  PubMed  CAS  Google Scholar 

  77. Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, Soubrier F (2008) Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res 103:432–440

    Article  PubMed  CAS  Google Scholar 

  78. Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, Deng A, Eichhorn J, Mahajan R, Agrawal R, Greve J, Robbins R, Patterson AJ, Bernstein D, Quertermous T (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res 65:73–82

    Article  PubMed  CAS  Google Scholar 

  79. Cheng X, Cheng XS, Pang CC (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470:171–175

    Article  PubMed  CAS  Google Scholar 

  80. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99:87–92

    Article  PubMed  CAS  Google Scholar 

  81. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9:1498–1505

    Article  PubMed  CAS  Google Scholar 

  82. Rassaf T, Flogel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J (2007) Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res 100:1749–1754

    Article  PubMed  CAS  Google Scholar 

  83. Gladwin MT, Kim-Shapiro DB (2008) The functional nitrite reductase activity of the heme-globins. Blood 112:2636–2647

    Article  PubMed  CAS  Google Scholar 

  84. Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, Xu X, Murphy E, Darley-Usmar VM, Gladwin MT (2007) Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100:654–661

    Article  PubMed  CAS  Google Scholar 

  85. Brune B, Zhou J (2003) The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Curr Med Chem 10:845–855

    Article  PubMed  CAS  Google Scholar 

  86. Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302:1975–1978

    Article  PubMed  CAS  Google Scholar 

  87. Brookes PS, Kraus DW, Shiva S, Doeller JE, Barone MC, Patel RP, Lancaster JR Jr, Darley-Usmar V (2003) Control of mitochondrial respiration by NO*, effects of low oxygen and respiratory state. J Biol Chem 278:31603–31609

    Article  PubMed  CAS  Google Scholar 

  88. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  PubMed  CAS  Google Scholar 

  89. Shiva S, Brookes PS, Patel RP, Anderson PG, Darley-Usmar VM (2001) Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc Natl Acad Sci USA 98:7212–7217

    Article  PubMed  CAS  Google Scholar 

  90. Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA 98:355–360

    Article  PubMed  CAS  Google Scholar 

  91. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  PubMed  CAS  Google Scholar 

  92. Kuwabara M, Kakinuma Y, Ando M, Katare RG, Yamasaki F, Doi Y, Sato T (2006) Nitric oxide stimulates vascular endothelial growth factor production in cardiomyocytes involved in angiogenesis. J Physiol Sci 56:95–101

    Article  PubMed  CAS  Google Scholar 

  93. Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA (2005) Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA 102:13147–13152

    Article  PubMed  CAS  Google Scholar 

  94. Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398

    Article  PubMed  CAS  Google Scholar 

  95. Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signaling. Cardiovasc Res 75:315–326

    Article  PubMed  CAS  Google Scholar 

  96. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814

    Article  PubMed  CAS  Google Scholar 

  97. Xu KY, Kuppusamy SP, Wang JQ, Li H, Cui H, Dawson TM, Huang PL, Burnett AL, Kuppusamy P, Becker LC (2003) Nitric oxide protects cardiac sarcolemmal membrane enzyme function and ion active transport against ischemia-induced inactivation. J Biol Chem 278:41798–41803

    Article  PubMed  CAS  Google Scholar 

  98. Balligand JL, Kobzik L, Han X, Kaye DM, Belhassen L, O’Hara DS, Kelly RA, Smith TW, Michel T (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270:14582–14586

    Article  PubMed  CAS  Google Scholar 

  99. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662

    Article  PubMed  CAS  Google Scholar 

  100. Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH, Schomburg S, Zaki AO, Oceandy D, Cartwright EJ, Buch MH, Emerson M, Neyses L (2006) The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281:23341–23348

    Article  PubMed  CAS  Google Scholar 

  101. Gyurko R, Kuhlencordt P, Fishman MC, Huang PL (2000) Modulation of mouse cardiac function in vivo by eNOS and ANP. Am J Physiol Heart Circ Physiol 278:H971–H981

    PubMed  CAS  Google Scholar 

  102. Godecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UK, Stumpe T, Isenberg G, Schrader J (2001) Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 532:195–204

    Article  PubMed  CAS  Google Scholar 

  103. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339

    PubMed  CAS  Google Scholar 

  104. Han X, Kubota I, Feron O, Opel DJ, Arstall MA, Zhao YY, Huang P, Fishman MC, Michel T, Kelly RA (1998) Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:6510–6515

    Article  PubMed  CAS  Google Scholar 

  105. Vandecasteele G, Eschenhagen T, Scholz H, Stein B, Verde I, Fischmeister R (1999) Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 5:331–334

    Article  PubMed  CAS  Google Scholar 

  106. Martin SR, Emanuel K, Sears CE, Zhang YH, Casadei B (2006) Are myocardial eNOS and nNOS involved in the beta-adrenergic and muscarinic regulation of inotropy? A systematic investigation. Cardiovasc Res 70:97–106

    Article  PubMed  CAS  Google Scholar 

  107. Sears CE, Ashley EA, Casadei B (2004) Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol Sci 359:1021–1044

    Article  PubMed  CAS  Google Scholar 

  108. Ashley EA, Sears CE, Bryant SM, Watkins HC, Casadei B (2002) Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Circulation 105:3011–3016

    Article  PubMed  CAS  Google Scholar 

  109. Brunner F, Andrew P, Wolkart G, Zechner R, Mayer B (2001) Myocardial contractile function and heart rate in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Circulation 104:3097–3102

    Article  PubMed  CAS  Google Scholar 

  110. Champion HC, Georgakopoulos D, Takimoto E, Isoda T, Wang Y, Kass DA (2004) Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3. Circ Res 94:657–663

    Article  PubMed  CAS  Google Scholar 

  111. Danson EJ, Zhang YH, Sears CE, Edwards AR, Casadei B, Paterson DJ (2005) Disruption of inhibitory G-proteins mediates a reduction in atrial beta-adrenergic signaling by enhancing eNOS expression. Cardiovasc Res 67:613–623

    Article  PubMed  CAS  Google Scholar 

  112. Massion PB, Dessy C, Desjardins F, Pelat M, Havaux X, Belge C, Moulin P, Guiot Y, Feron O, Janssens S, Balligand JL (2004) Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and reinforces vagal inhibition of cardiac contraction. Circulation 110:2666–2672

    Article  PubMed  CAS  Google Scholar 

  113. Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, Steinhoff HJ, Goedecke A, Schrader J, Gladwin MT, Kelm M, Rassaf T (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia–reperfusion injury. Proc Natl Acad Sci USA 105:10256–10261

    Article  PubMed  CAS  Google Scholar 

  114. Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540:457–467

    Article  PubMed  CAS  Google Scholar 

  115. Solaro RJ (2001) Modulation of cardiac myofilament activity by protein phosphorylation. In: Page E, Fozzard H, Solaro RJ (eds) Handbook of physiology, section 2: the cardiovascular system, vol 1: the heart. Oxford University Press, New York, pp 264–300

    Google Scholar 

  116. Bardenheuer H, Schrader J (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol 250:H173–H180

    PubMed  CAS  Google Scholar 

  117. Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflugers Arch 372:29–35

    Article  PubMed  CAS  Google Scholar 

  118. Sparks HV Jr, Bardenheuer H (1986) Regulation of adenosine formation by the heart. Circ Res 58:193–201

    PubMed  CAS  Google Scholar 

  119. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    PubMed  CAS  Google Scholar 

  120. Marshall JM (2007) The roles of adenosine and related substances in exercise hyperaemia. J Physiol 583:835–845

    Article  PubMed  CAS  Google Scholar 

  121. el-Ani D, Jacobson KA, Shainberg A (1994) Characterization of adenosine receptors in intact cultured heart cells. Biochem Pharmacol 48:727–735

    Article  PubMed  CAS  Google Scholar 

  122. Tikh EI, Fenton RA, Dobson JG Jr (2006) Contractile effects of adenosine A1 and A2A receptors in isolated murine hearts. Am J Physiol Heart Circ Physiol 290:H348–H356

    Article  PubMed  CAS  Google Scholar 

  123. Teng B, Ledent C, Mustafa SJ (2008) Up-regulation of A 2B adenosine receptor in A 2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 44:905–914

    Article  PubMed  CAS  Google Scholar 

  124. Fenton RA, Moore ED, Fay FS, Dobson JG Jr (1991) Adenosine reduces the Ca2+ transients of isoproterenol-stimulated rat ventricular myocytes. Am J Physiol 261:C1107–C1114

    PubMed  CAS  Google Scholar 

  125. Monahan TS, Sawmiller DR, Fenton RA, Dobson JG Jr (2000) Adenosine A(2a)-receptor activation increases contractility in isolated perfused hearts. Am J Physiol Heart Circ Physiol 279:H1472–H1481

    PubMed  CAS  Google Scholar 

  126. Woodiwiss AJ, Honeyman TW, Fenton RA, Dobson JG Jr (1999) Adenosine A2a-receptor activation enhances cardiomyocyte shortening via Ca2+-independent and -dependent mechanisms. Am J Physiol 276:H1434–H1441

    PubMed  CAS  Google Scholar 

  127. Norton GR, Woodiwiss AJ, McGinn RJ, Lorbar M, Chung ES, Honeyman TW, Fenton RA, Dobson JG Jr, Meyer TE (1999) Adenosine A1 receptor-mediated antiadrenergic effects are modulated by A2a receptor activation in rat heart. Am J Physiol 276:H341–H349

    PubMed  CAS  Google Scholar 

  128. LaMonica DA, Frohloff N, Dobson JG Jr (1985) Adenosine inhibition of catecholamine-stimulated cardiac membrane adenylate cyclase. Am J Physiol 248:H737–H744

    PubMed  CAS  Google Scholar 

  129. Miyazaki K, Komatsu S, Ikebe M, Fenton RA, Dobson JG Jr (2004) Protein kinase cepsilon and the antiadrenergic action of adenosine in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 287:H1721–H1729

    Article  PubMed  CAS  Google Scholar 

  130. Kjaer M, Hanel B, Worm L, Perko G, Lewis SF, Sahlin K, Galbo H, Secher NH (1999) Cardiovascular and neuroendocrine responses to exercise in hypoxia during impaired neural feedback from muscle. Am J Physiol 277:R76–R85

    PubMed  CAS  Google Scholar 

  131. Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, Houston CS (1987) Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol 63:531–539

    PubMed  CAS  Google Scholar 

  132. Kaijser L, Roach RC (1999) Myocardial blood flow and oxygen extraction in man after adaptation to high altitude. FASEB J 13:LB57

    Google Scholar 

  133. Roach RC, Koskolou MD, Calbet JA, Saltin B (1999) Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Physiol 276:H438–H445

    PubMed  CAS  Google Scholar 

  134. Amann M, Calbet JA (2008) Convective oxygen transport and fatigue. J Appl Physiol 104:861–870

    Article  PubMed  Google Scholar 

  135. Hurtado A. (1960). Some clinical aspects of life at high altitudes Ann Intern Med 53

  136. Mortimer E A Jr, Monson RR, MacMahon B (1977) Reduction in mortality from coronary heart disease in men residing at high altitude. N Engl J Med 296:581–585

    PubMed  Google Scholar 

  137. Poupa O, Krofta K, Prochazka J, Turek Z (1966) Acclimation to simulated high altitude and acute cardiac necrosis. Fed Proc 25:1243–1246

    PubMed  CAS  Google Scholar 

  138. Meerson FZ, Gomzakov OA, Shimkovich MV (1973) Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J Cardiol 31:30–34

    Article  PubMed  CAS  Google Scholar 

  139. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  140. Tissier R, Berdeaux A, Ghaleh B, Couvreur N, Krieg T, Cohen MV, Downey JM (2008) Making the heart resistant to infarction: how can we further decrease infarct size? Front Biosci 13:284–301

    Article  PubMed  CAS  Google Scholar 

  141. Das M, Das DK (2008) Molecular mechanism of preconditioning. IUBMB Life 60:199–203

    Article  PubMed  CAS  Google Scholar 

  142. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol Rev 88:581–609

    Article  PubMed  CAS  Google Scholar 

  143. Speechly-Dick ME, Mocanu MM, Yellon DM (1994) Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res 75:586–590

    PubMed  CAS  Google Scholar 

  144. Gopalakrishna R, Anderson WB (1989) Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci USA 86:6758–6762

    Article  PubMed  CAS  Google Scholar 

  145. Seko Y, Tobe K, Takahashi N, Kaburagi Y, Kadowaki T, Yazaki Y (1996) Hypoxia and hypoxia/reoxygenation activate Src family tyrosine kinases and p21ras in cultured rat cardiac myocytes. Biochem Biophys Res Commun 226:530–535

    Article  PubMed  CAS  Google Scholar 

  146. Song C, Vondriska TM, Wang GW, Klein JB, Cao X, Zhang J, Kang YJ, D’Souza S, Ping P (2002) Molecular conformation dictates signaling module formation: example of PKCepsilon and Src tyrosine kinase. Am J Physiol Heart Circ Physiol 282:H1166–H1171

    PubMed  CAS  Google Scholar 

  147. Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL (2008) Complete loss of ischemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1alpha. Cardiovasc Res 77:463–470

    Article  PubMed  CAS  Google Scholar 

  148. Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, Entman ML, Taegtmeyer H (2005) Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation 112:407–415

    Article  PubMed  CAS  Google Scholar 

  149. Neckar J, Szarszoi O, Herget J, Ostadal B, Kolar F (2003) Cardioprotective effect of chronic hypoxia is blunted by concomitant hypercapnia. Physiol Res 52:171–175

    PubMed  CAS  Google Scholar 

  150. Rakusan K, Cicutti N, Kolar F (2001) Cardiac function, microvascular structure, and capillary hematocrit in hearts of polycythemic rats. Am J Physiol Heart Circ Physiol 281:H2425–H2431

    PubMed  CAS  Google Scholar 

  151. Zungu M, Young ME, Stanley WC, Essop MF (2008) Expression of mitochondrial regulatory genes parallels respiratory capacity and contractile function in a rat model of hypoxia-induced right ventricular hypertrophy. Mol Cell Biochem 318:175–181

    Article  PubMed  CAS  Google Scholar 

  152. Opie LH (1969) Metabolism of the heart in health and disease. II. Am Heart J 77:100–122

    Article  PubMed  CAS  Google Scholar 

  153. Manchester J, Kong X, Nerbonne J, Lowry OH, Lawrence J C Jr (1994) Glucose transport and phosphorylation in single cardiac myocytes: rate-limiting steps in glucose metabolism. Am J Physiol 266:E326–E333

    PubMed  CAS  Google Scholar 

  154. Feldhaus LM, Liedtke AJ (1998) mRNA expression of glycolytic enzymes and glucose transporter proteins in ischemic myocardium with and without reperfusion. J Mol Cell Cardiol 30:2475–2485

    Article  PubMed  CAS  Google Scholar 

  155. Ye G, Donthi RV, Metreveli NS, Epstein PN (2005) Overexpression of hexokinase protects hypoxic and diabetic cardiomyocytes by increasing ATP generation. Cardiovasc Toxicol 5:293–300

    Article  PubMed  CAS  Google Scholar 

  156. Holden JE, Stone CK, Clark CM, Brown WD, Nickles RJ, Stanley C, Hochachka PW (1995) Enhanced cardiac metabolism of plasma glucose in high-altitude natives: adaptation against chronic hypoxia. J Appl Physiol 79:222–228

    PubMed  CAS  Google Scholar 

  157. Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281:9030–9037

    Article  PubMed  CAS  Google Scholar 

  158. McClelland GB, Brooks GA (2002) Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia. J Appl Physiol 92:1573–1584

    PubMed  CAS  Google Scholar 

  159. van Hall G, Calbet JA, Sondergaard H, Saltin B (2001) The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude. J Physiol 536:963–975

    Article  PubMed  Google Scholar 

  160. Issekutz B Jr, Shaw WA, Issekutz TB (1975) Effect of lactate on FFA and glycerol turnover in resting and exercising dogs. J Appl Physiol 39:349–353

    PubMed  CAS  Google Scholar 

  161. Boehm EA, Jones BE, Radda GK, Veech RL, Clarke K (2001) Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol 280:H977–H983

    PubMed  CAS  Google Scholar 

  162. Daneshrad Z, Garcia-Riera MP, Verdys M, Rossi A (2000) Differential responses to chronic hypoxia and dietary restriction of aerobic capacity and enzyme levels in the rat myocardium. Mol Cell Biochem 210:159–166

    Article  PubMed  CAS  Google Scholar 

  163. Kennedy SL, Stanley WC, Panchal AR, Mazzeo RS (2001) Alterations in enzymes involved in fat metabolism after acute and chronic altitude exposure. J Appl Physiol 90:17–22

    PubMed  CAS  Google Scholar 

  164. Ngumbela KC, Sack MN, Essop MF (2003) Counter-regulatory effects of incremental hypoxia on the transcription of a cardiac fatty acid oxidation enzyme-encoding gene. Mol Cell Biochem 250:151–158

    Article  PubMed  CAS  Google Scholar 

  165. Huss JM, Levy FH, Kelly DP (2001) Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem 276:27605–27612

    Article  PubMed  CAS  Google Scholar 

  166. Razeghi P, Young ME, Abbasi S, Taegtmeyer H (2001) Hypoxia in vivo decreases peroxisome proliferator-activated receptor alpha-regulated gene expression in rat heart. Biochem Biophys Res Commun 287:5–10

    Article  PubMed  CAS  Google Scholar 

  167. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9

    PubMed  CAS  Google Scholar 

  168. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    Article  PubMed  CAS  Google Scholar 

  169. Cervos Navarro J, Kunas RC, Sampaolo S, Mansmann U (1999) Heart mitochondria in rats submitted to chronic hypoxia. Histol Histopathol 14:1045–1052

    PubMed  CAS  Google Scholar 

  170. Ostadal B, Kolar F (2007) Cardiac adaptation to chronic high-altitude hypoxia: beneficial and adverse effects. Respir Physiol Neurobiol 158:224–236

    Article  PubMed  CAS  Google Scholar 

  171. Kolar F, Neckar J, Ostadal B (2005) MCC-134, a blocker of mitochondrial and opener of sarcolemmal ATP-sensitive K+ channels, abrogates cardioprotective effects of chronic hypoxia. Physiol Res 54:467–471

    PubMed  CAS  Google Scholar 

  172. Hrbasova M, Novotny J, Hejnova L, Kolar F, Neckar J, Svoboda P (2003) Altered myocardial Gs protein and adenylyl cyclase signaling in rats exposed to chronic hypoxia and normoxic recovery. J Appl Physiol 94:2423–2432

    Article  PubMed  CAS  Google Scholar 

  173. Asemu G, Papousek F, Ostadal B, Kolar F (1999) Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias. Involvement of mitochondrial K(ATP) channel. J Mol Cell Cardiol 31:1821–1831

    Article  PubMed  CAS  Google Scholar 

  174. Meerson FZ, Ustinova EE, Orlova EH (1987) Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol 10:783–789

    Article  PubMed  CAS  Google Scholar 

  175. Neckar J, Ostadal B, Kolar F (2004) Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res 53:621–628

    PubMed  CAS  Google Scholar 

  176. Tajima M, Katayose D, Bessho M, Isoyama S (1994) Acute ischemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischaemia. Cardiovasc Res 28:312–319

    Article  PubMed  CAS  Google Scholar 

  177. Neckar J, Papousek F, Novakova O, Ost’adal B, Kolar F (2002) Cardioprotective effects of chronic hypoxia and ischemic preconditioning are not additive. Basic Res Cardiol 97:161–167

    Article  PubMed  Google Scholar 

  178. Asemu G, Neckar J, Szarszoi O, Papousek F, Ostadal B, Kolar F (2000) Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res 49:597–606

    PubMed  CAS  Google Scholar 

  179. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448

    Article  PubMed  Google Scholar 

  180. Pei JM, Yu XC, Fung ML, Zhou JJ, Cheung CS, Wong NS, Leung MP, Wong TM (2000) Impaired 8G(s)alpha and adenylyl cyclase cause beta-adrenoceptor desensitization in chronically hypoxic rat hearts. Am J Physiol Cell Physiol 279:C1455–C1463

    PubMed  CAS  Google Scholar 

  181. Pei JM, Zhou JJ, Bian JS, Yu XC, Fung ML, Wong TM (2000) Impaired [Ca(2 +)](i) and pH(i) responses to kappa-opioid receptor stimulation in the heart of chronically hypoxic rats. Am J Physiol Cell Physiol 279:C1483–C1494

    PubMed  CAS  Google Scholar 

  182. Shan J, Yu XC, Fung ML, Wong TM (2002) Attenuated “cross talk” between kappa-opioid receptors and beta-adrenoceptors in the heart of chronically hypoxic rats. Pflugers Arch 444:126–132

    Article  PubMed  CAS  Google Scholar 

  183. Pei JM, Kravtsov GM, Wu S, Das R, Fung ML, Wong TM (2003) Calcium homeostasis in rat cardiomyocytes during chronic hypoxia: a time course study. Am J Physiol Cell Physiol 285:C1420–C1428

    PubMed  CAS  Google Scholar 

  184. Gregg DE, Khouri EM, Donald DE, Lowensohn HS, Pasyk S (1972) Coronary circulation in the conscious dog with cardiac neural ablation. Circ Res 31:129–144

    PubMed  CAS  Google Scholar 

  185. DiCarlo SE, Blair RW, Bishop VS, Stone HL (1988) Role of beta 2-adrenergic receptors on coronary resistance during exercise. J Appl Physiol 64:2287–2293

    PubMed  CAS  Google Scholar 

  186. Gwirtz PA, Mass HJ, Strader JR, Jones CE (1988) Coronary and cardiac responses to exercise after chronic ventricular sympathectomy. Med Sci Sports Exerc 20:126–135

    Article  PubMed  CAS  Google Scholar 

  187. Chilian WM, Harrison DG, Haws CW, Snyder WD, Marcus ML (1986) Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58:68–82

    PubMed  CAS  Google Scholar 

  188. Semenza GL, Prabhakar NR (2007) HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal 9:1391–1396

    Article  PubMed  CAS  Google Scholar 

  189. Calbet JA, Radegran G, Boushel R, Sondergaard H, Saltin B, Wagner PD (2004) Plasma volume expansion does not increase maximal cardiac output or VO2max in lowlanders acclimatized to altitude. Am J Physiol Heart Circ Physiol 287:H1214–H1224

    Article  PubMed  CAS  Google Scholar 

  190. Boushel R, Calbet JA, Radegran G, Sondergaard H, Wagner PD, Saltin B (2001) Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation 104:1785–1791

    Article  PubMed  CAS  Google Scholar 

  191. Suarez J, Alexander JK, Houston CS (1987) Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am J Cardiol 60:137–142

    Article  PubMed  CAS  Google Scholar 

  192. Robach P, Calbet JA, Thomsen JJ, Boushel R, Mollard P, Rasmussen P, Lundby C (2008) The ergogenic effect of recombinant human erythropoietin on VO2max depends on the severity of arterial hypoxemia. PLoS ONE 3:e2996

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors express their gratitude to James P. Fisher for his careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. L. Calbet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calbet, J.A.L., Robach, P. & Lundby, C. The exercising heart at altitude. Cell. Mol. Life Sci. 66, 3601–3613 (2009). https://doi.org/10.1007/s00018-009-0148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0148-6

Keywords

Navigation