Skip to main content

Advertisement

Log in

Elevated plasma interleukin-6 levels in trained male triathletes following an acute period of intense interval training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate possible changes in the plasma IL-6 levels, subjective reporting of sources and symptoms of stress and the innate immune system in response to an acute period of intensified run training in highly trained endurance athletes. Eight healthy endurance trained male subjects (mean ± SD age 23 ± 2 years, VO2max 64.8 ± 2.6 ml kg−1 min−1, mass 77.1 ± 2.9 kg) completed the study which took place over a 4 week period. In weeks 2 and 3, in addition to their normal endurance training, subjects completed interval-training run sessions on three successive days. Saliva and venous blood samples were taken at the end of each week. Blood samples were analysed for leukocyte counts; neutrophil function; plasma IL-6; creatine kinase activity; and cortisol. Symptoms and sources of stress were assessed by questionnaire. Plasma IL-6 and creatine kinase activity were elevated following intensified training. Neutrophil function was reduced but total leukocyte and neutrophil counts, plasma cortisol and salivary IgA remained unchanged. There was a worsening in symptoms of stress despite there being no significant change in the sources of stress during intensified training. In conclusion, an acute period of intensified training can induce a suppression of the innate immune system and a chronic elevation in IL-6. This was associated with an increase in fatigue and generalised malaise which lends support to the recent cytokine theories of unexplained, underperformance syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achten J, Halson SL, Moseley L, Rayson MP, Casey A, Jeukendrup AE (2004) Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state. J Appl Physiol 96:1331–1340

    Article  PubMed  CAS  Google Scholar 

  • Arnold MC, Papanicolaou DA, O’Grady JA, Lotsikas A, Dale JK, Straus SE, Grafman J (2002) Using an interleukin-6 challenge to evaluate neuropsychological performance in chronic fatigue syndrome. Psychol Med 32:1075–1089

    Article  PubMed  CAS  Google Scholar 

  • Berk LS, Nieman DC, Youngberg WS, Arabatzis K, Simpson-Westerberg M, Lee JW, Tan SA, Eby WC (1990) The effect of long endurance running on natural killer cells in marathoners. Med Sci Sports Exerc 22:207–212

    PubMed  CAS  Google Scholar 

  • Budgett R, Newsholme E, Lehmann M, Sharp C, Jones D, Peto T, Collins D, Nerurkar R, White P (2000) Redefining the overtraining syndrome as the unexplained underperformance syndrome. Br J Sports Med 34:67–68

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Anderson IM, Grahame-Smith DG (1990) Neuroendocrine effects of azapirones. J Clin Psychopharmacol 10:21S–25S

    PubMed  CAS  Google Scholar 

  • Cox AJ, Gleeson M, Pyne DB, Saunders PU, Clancy RL, Fricker PA (2004) Valtrex therapy for Epstein-Barr virus reactivation and upper respiratory symptoms in elite runners. Med Sci Sports Exerc 36:1104–1110

    Article  PubMed  CAS  Google Scholar 

  • Fry RW, Grove JR, Morton AR, Zeroni PM, Gaudieri S, Keast D (1994) Psychological and immunological correlates of acute overtraining. Br J Sports Med 28:241–246

    PubMed  CAS  Google Scholar 

  • Fry RW, Morton AR, Keast D (1991) Overtraining in athletes. An update. Sports Med 12:32–65

    PubMed  CAS  Google Scholar 

  • Ganz T, Metcalf JA, Gallin JI, Boxer LA, Lehrer RI (1988) Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak–Higashi syndrome and “specific” granule deficiency. J Clin Invest 82:552–556

    Article  PubMed  CAS  Google Scholar 

  • Gleeson M (2000) Mucosal immunity and respiratory illness in elite athletes. Int J Sports Med 21(Suppl 1):S33–S43

    Article  PubMed  CAS  Google Scholar 

  • Gleeson M, Bishop NC (2000) Special feature for the olympics: effects of exercise on the immune system: modification of immune responses to exercise by carbohydrate, glutamine and anti-oxidant supplements. Immunol Cell Biol 78:554–561

    Article  PubMed  CAS  Google Scholar 

  • Halson SL, Bridge MW, Meeusen R, Busschaert B, Gleeson M, Jones DA, Jeukendrup AE (2002) Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol 93:947–956

    PubMed  Google Scholar 

  • Halson SL, Lancaster GI, Jeukendrup AE, Gleeson M (2003) Immunological responses to overreaching in cyclists. Med Sci Sports Exerc 35:854–861

    Article  PubMed  Google Scholar 

  • Hellsten Y, Frandsen U, Orthenblad N, Sjodin B, Richter EA (1997) Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. J Physiol 498(Pt 1):239–248

    PubMed  CAS  Google Scholar 

  • Jeukendrup AE, Vet-Joop K, Sturk A, Stegen JH, Senden J, Saris WH, Wagenmakers AJ (2000) Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin Sci (Colch) 98:47–55

    Article  CAS  Google Scholar 

  • Johnson JL, Moore EE, Tamura DY, Zallen G, Biffl WL, Silliman CC (1998) Interleukin-6 augments neutrophil cytotoxic potential via selective enhancement of elastase release. J Surg Res 76:91–94

    Article  PubMed  CAS  Google Scholar 

  • Keast D, Cameron K, Morton AR (1988) Exercise and the immune response. Sports Med 5:248–267

    PubMed  CAS  Google Scholar 

  • Kiecolt-Glaser JK, Glaser R, Shuttleworth EC, Dyer CS, Ogrocki P, Speicher CE (1987) Chronic stress and immunity in family caregivers of Alzheimer’s disease victims. Psychosom Med 49:523–535

    PubMed  CAS  Google Scholar 

  • Lloyd AR, Oppenheim JJ (1992) Poly’s lament: the neglected role of the polymorphonuclear neutrophil in the afferent limb of the immune response. Immunol Today 13:169–172

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC (2001) Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol 84:180–186

    Article  PubMed  CAS  Google Scholar 

  • Mackinnon LT, Ginn E, Seymour GJ (1991) Temporal relationship between exercise-induced decreases in salivary IgA concentration and subsequent appearance of upper respiratory illness in elite athletes. Med Sci Sports Exerc 23:S45

    Google Scholar 

  • McCarthy DA, Dale MM (1988) The leucocytosis of exercise. A review and model. Sports Med 6:333–363

    PubMed  CAS  Google Scholar 

  • Miki C, Iriyama K, Mayer AD, Buckels JA, Harrison JD, Suzuki H, McMaster P (1999) Energy storage and cytokine response in patients undergoing liver transplantation. Cytokine 11:244–248

    Article  PubMed  CAS  Google Scholar 

  • Morgan WP, Brown DR, Raglin JS, O’Connor PJ, Ellickson KA (1987) Psychological monitoring of overtraining and staleness. Br J Sports Med 21:107–114

    Article  PubMed  CAS  Google Scholar 

  • Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, Williams F, Butterworth DE (1998) Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol 84:1252–1259

    PubMed  CAS  Google Scholar 

  • Nieman DC, Simandle S, Henson DA, Warren BJ, Suttles J, Davis JM, Buckley KS, Ahle JC, Butterworth DE, Fagoaga OR (1995) Lymphocyte proliferative response to 2.5 hours of running. Int J Sports Med 16:404–409

    PubMed  CAS  Google Scholar 

  • Nishimoto N, Sasai M, Shima Y, Nakagawa M, Matsumoto T, Shirai T, Kishimoto T, Yoshizaki K (2000) Improvement in Castleman’s disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 95:56–61

    PubMed  CAS  Google Scholar 

  • O’Reilly KP, Warhol MJ, Fielding RA, Frontera WR, Meredith CN, Evans WJ (1987) Eccentric exercise-induced muscle damage impairs muscle glycogen repletion. J Appl Physiol 63:252–256

    PubMed  CAS  Google Scholar 

  • Parry-Billings M, Budgett R, Koutedakis Y, Blomstrand E, Brooks S, Williams C, Calder PC, Pilling S, Baigrie R, Newsholme EA (1992) Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc 24:1353–1358

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Steensberg A, Schjerling P (2001) Muscle-derived interleukin-6: possible biological effects. J Physiol 536:329–337

    Article  PubMed  CAS  Google Scholar 

  • Peters EM, Bateman ED (1983) Ultramarathon running and upper respiratory tract infections. An epidemiological survey. S Afr Med J 64:582–584

    PubMed  CAS  Google Scholar 

  • Prasad K, Chaudhary AK, Kalra J (1991) Oxygen-derived free radicals producing activity and survival of activated polymorphonuclear leukocytes. Mol Cell Biochem 103:51–62

    Article  PubMed  CAS  Google Scholar 

  • Pyne DB (1994) Regulation of neutrophil function during exercise. Sports Med 17:245–258

    PubMed  CAS  Google Scholar 

  • Pyne DB, Baker MS, Fricker PA, McDonald WA, Telford RD, Weidemann MJ (1995) Effects of an intensive 12-wk training program by elite swimmers on neutrophil oxidative activity. Med Sci Sports Exerc 27:536–542

    PubMed  CAS  Google Scholar 

  • Robson P (2003) Elucidating the unexplained underperformance syndrome in endurance athletes: the interleukin-6 hypothesis. Sports Med 33:771–781

    Article  PubMed  Google Scholar 

  • Robson PJ, Blannin AK, Walsh NP, Castell LM, Gleeson M (1999) Effects of exercise intensity, duration and recovery on in vitro neutrophil function in male athletes. Int J Sports Med 20:128–135

    PubMed  CAS  Google Scholar 

  • Robson-Ansley PJ, de Milander L, Collins M, Noakes TD (2004) Acute interleukin-6 administration impairs athletic performance in healthy, trained male runners. Can J Appl Physiol 29:411–418

    PubMed  CAS  Google Scholar 

  • Rushall B (1990) A tool for measuring stress tolerance in elite athletes. J Appl Sports Psychol 2:51–64

    Google Scholar 

  • Schobitz B, Pezeshki G, Pohl T, Hemmann U, Heinrich PC, Holsboer F, Reul JM (1995) Soluble interleukin-6 (IL-6) receptor augments central effects of IL-6 in vivo. FASEB J 9:659–664

    PubMed  CAS  Google Scholar 

  • Schwellnus M, Kiessig M, Dermam W, Noakes TD (1997) Fusafungine reduced symptoms of upper respiratory tract infections (URTI) in runners after a 56 km race. Med Sci Sports Exerc 29:S296

    Google Scholar 

  • Smith LL (2000) Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 32:317–331

    Article  PubMed  CAS  Google Scholar 

  • Spath-Schwalbe E, Hansen K, Schmidt F, Schrezenmeier H, Marshall L, Burger K, Fehm HL, Born J (1998) Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocrinol Metab 83:1573–1579

    Article  PubMed  CAS  Google Scholar 

  • Starkie RL, Arkinstall MJ, Koukoulas I, Hawley JA, Febbraio MA (2001) Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J Physiol 533:585–591

    Article  PubMed  CAS  Google Scholar 

  • Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund PB (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242

    Article  PubMed  CAS  Google Scholar 

  • Stone AA, Neale JM, Cox DS, Napoli A, Valdimarsdottir H, Kennedy-Moore E (1994) Daily events are associated with a secretory immune response to an oral antigen in men. Health Psychol 13:440–446

    Article  PubMed  CAS  Google Scholar 

  • Toft AD, Jensen LB, Bruunsgaard H, Ibfelt T, Halkjaer-Kristensen J, Febbraio M, Pedersen BK (2002) Cytokine response to eccentric exercise in young and elderly humans. Am J Physiol Cell Physiol 283:C289–C295

    PubMed  CAS  Google Scholar 

  • Vassalli JD, Granelli-Piperno A, Griscelli C, Reich E (1978) Specific protease deficiency in polymorphonuclear leukocytes of Chediak–Higashi syndrome and beige mice. J Exp Med 147:1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Walsh NP, Blannin AK, Clark AM, Cook L, Robson PJ, Gleeson M (1999) The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci 17:129–134

    Article  PubMed  CAS  Google Scholar 

  • Yang KD, Hill HR (1991) Neutrophil function disorders: pathophysiology, prevention, and therapy. J Pediatr 119:343–354

    Article  PubMed  CAS  Google Scholar 

  • Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U (2004) Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur J Nutr 43:148–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula J. Robson-Ansley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson-Ansley, P.J., Blannin, A. & Gleeson, M. Elevated plasma interleukin-6 levels in trained male triathletes following an acute period of intense interval training. Eur J Appl Physiol 99, 353–360 (2007). https://doi.org/10.1007/s00421-006-0354-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0354-y

Keywords

Navigation