Skip to main content
Log in

Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study investigated the effect of hot conditions on repeated sprint cycling performance and post-exercise alterations in isometric knee extension function. Twelve physically active participants performed 10 × 6-s “all-out” sprints on a cycle ergometer (recovery = 30 s), followed 6 min later by 5 × 6-s sprints (recovery = 30 s) in either a neutral (24 °C/30 %rH) or a hot (35 °C/40 %rH) environment. Neuromuscular tests including voluntary and electrically evoked isometric contractions of the knee extensors were performed before and after exercise. Average core temperature during exercise was higher (38.0 ± 0.1 vs. 37.7 ± 0.1 °C, respectively; P < 0.05) in hot versus neutral environments. Peak power output decreased (−17.9 % from sprint 1 to sprint 10 and −17.0 % from sprint 11 to sprint 15; P < 0.001) across repetitions. Average peak power output during the first ten sprints was higher (+3.1 %; P < 0.01) in the hot ambient temperature condition. Maximal strength (−12 %) and rate of force development (−15 to −26 %, 30–200 ms from the onset of contraction) decreased (P < 0.001) during brief contractions after exercise, irrespectively of the ambient temperature. During brief maximal contractions, changes in voluntary activation (~80 %) were not affected by exercise or temperature. Voluntary activation declined (P < 0.01) during the sustained contraction, with these reductions being more pronounced (P < 0.05) after exercise but not affected by the ambient temperature. Resting twitch amplitude declined (P < 0.001) by ~42 %, independently of the ambient temperature. In conclusion, heat exposure has no effect on the pattern and the extent of isometric knee extensor fatigue following repeated cycling sprints in the absence of hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93(4):1318–1326

    PubMed  Google Scholar 

  • Akima H, Kinugasa R, Kuno S (2005) Recruitment of the thigh muscles during sprint cycling by muscle functional magnetic resonance imaging. Int J Sports Med 26(4):245–252

    Article  PubMed  CAS  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  PubMed  CAS  Google Scholar 

  • Allen GM, McKenzie DK, Gandevia SC (1998) Twitch interpolation of the elbow flexor muscles at high forces. Muscle Nerve 21(3):318–328

    Article  PubMed  CAS  Google Scholar 

  • Almudheki F, Girard O, Grantham J, Racinais S (2011) Hot ambient conditions do not alter intermittent cycling sprint performance. J Sci Med Sport. doi:10.1016/j.jsams.2011.07.009

    Google Scholar 

  • Andersen LL, Aagaard P (2006) Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol 96(1):46–52

    Article  PubMed  Google Scholar 

  • Backx K, McNaughton L, Crickmore L, Palmer G, Carlisle A (2000) Effects of differing heat and humidity on the performance and recovery from multiple high intensity, intermittent exercise bouts. Int J Sports Med 21(6):400–405

    Article  PubMed  CAS  Google Scholar 

  • Bergh U, Ekblom B (1979) Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107(1):33–37

    Article  PubMed  CAS  Google Scholar 

  • Billaut F, Basset FA, Giacomoni M, Lemaitre F, Tricot V, Falgairette G (2006) Effect of high-intensity intermittent cycling sprints on neuromuscular activity. Int J Sports Med 27(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Binkhorst RA, Hoofd L, Vissers AC (1977) Temperature and force–velocity relationship of human muscle. J Appl Physiol 42(4):471–478

    PubMed  CAS  Google Scholar 

  • Bishop D (2003) Warm up I. Potential mechanisms and the effects of passive warm up on exercise performance. Sports Med 33(6):439–454

    Article  PubMed  Google Scholar 

  • Bishop D, Lawrence S, Spencer M (2003) Predictors of repeated-sprint ability in elite female hockey players. J Sci Med Sport 6(2):199–209

    Article  PubMed  CAS  Google Scholar 

  • Bojsen-Moller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P (2005) Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 99:986–994

    Article  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences. 2nd edn. Hillsdale (NJ): Lawrence Erlbaum Associates, p. 567

    Google Scholar 

  • De Haan A, Gerrits KH, de Ruiter CJ (2009) Counterpoint: the interpolated twitch does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:355–357

    Article  PubMed  Google Scholar 

  • Dewhurst S, Macaluso A, Gizzi L, Felici F, Farina D, De Vito G (2010) Effects of altered muscle temperature on neuromuscular properties in young and older women. Eur J Appl Physiol 108(3):451–455

    Article  PubMed  Google Scholar 

  • Ditroilo M, Watsford M, Fernández-Peña E, D’Amen G, Lucertini F, De Vito G (2011) Effects of fatigue on muscle stiffness and intermittent sprinting during cycling. Med Sci Sports Exerc 43(5):837–845

    Article  PubMed  Google Scholar 

  • Drust B, Rasmussen P, Mohr M, Nielsen B, Nybo L (2005) Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand 183(2):181–190

    Article  PubMed  CAS  Google Scholar 

  • Duffield R, King M, Skein M (2009) Recovery of voluntary and evoked muscle performance following intermittent-sprint exercise in the heat. Int J Sports Physiol Perform 4:254–268

    PubMed  Google Scholar 

  • Falk B, Radom-Isaac S, Hoffmann JR, Wang Y, Yarom Y, Magazanik A, Weinstein Y (1998) The effect of heat exposure on performance of and recovery from high-intensity, intermittent exercise. Int J Sports Med 19(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96(4):1486–1495

    Article  PubMed  Google Scholar 

  • Gaitanos GC, Williams LH, Boobis H, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719

    PubMed  CAS  Google Scholar 

  • Gaoua N, Grantham J, El Massioui F, Girard O, Racinais S (2011) Cognitive decrements do not follow neuromuscular alterations during passive heat exposure. Int J Hyperthermia 27(1):10–19

    Article  PubMed  Google Scholar 

  • Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability—Part 1. Factors contributing to fatigue. Sports Med 41(8):673–694

    Article  PubMed  Google Scholar 

  • Goodall S, Ross EZ, Romer LM (2010) Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions. J Appl Physiol 109(6):1842–1851

    Article  PubMed  Google Scholar 

  • Gray SR, De Vito G, Nimmo MA, Farina D, Ferguson RA (2006) Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. Am J Physiol Regul Integr Comp Physiol 290(2):R376–R382

    Article  PubMed  CAS  Google Scholar 

  • Linnane DM, Bracken RM, Brooks S, Cox VM, Ball D (2004) Effects of hyperthermia on the metabolic responses to repeated high-intensity exercise. Eur J Appl Physiol 93(1–2):159–166

    Article  PubMed  CAS  Google Scholar 

  • McKenzie JE, Osgood DW (2004) Validation of a new telemetric core temperature monitor. J Thermal Biol 29:605–611

    Article  Google Scholar 

  • Mendez-Villanueva A, Hamer P, Bishop D (2007) Fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc 39(12):2219–2225

    Article  PubMed  Google Scholar 

  • Mendez-Villanueva A, Hamer P, Bishop D (2008) Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 103(4):411–419

    Article  PubMed  Google Scholar 

  • Nybo L, Nielsen B (2001) Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol 91(3):1055–1060

    PubMed  CAS  Google Scholar 

  • Perrey S, Racinais S, Saimouaa K, Girard O (2010) Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol 109(6):1027–1036

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti N, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35(4):486–495

    Article  PubMed  Google Scholar 

  • Racinais S, Girard O (2012) Neuromuscular failure is unlikely to explain the early exercise cessation in hot ambient conditions. Psychophysiology. doi:10.1111/j.1469-8986.2012.01360.x

    PubMed  Google Scholar 

  • Racinais S, Oksa J (2010) Temperature and neuromuscular function. Scand J Med Sci Sports 20(3):1–18

    Article  PubMed  Google Scholar 

  • Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S (2007) Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc 39(2):268–274

    Article  PubMed  Google Scholar 

  • Racinais S, Gaoua N, Grantham J (2008) Hyperthermia impairs short-term memory and peripheral motor drive transmission. J Physiol 586(Pt19):4751–4762

    Google Scholar 

  • Rutkove SB (2001) Effects of temperature on neuromuscular electro-physiology. Muscle Nerve 24:867–882

    Article  PubMed  CAS  Google Scholar 

  • Sargeant AJ (1987) Effect of muscle temperature on leg extension force and short-term power output in humans. Eur J Appl Physiol Occup Physiol 56(6):693–698

    Article  PubMed  CAS  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106(2):556–565

    Article  PubMed  Google Scholar 

  • Thomas MM, Cheung SS, Elder GC, Sleiver GC (2006) Voluntary muscle activation is impaired by core temperature rather than local muscle temperature. J Appl Physiol 100(4):1361–1369

    Article  PubMed  Google Scholar 

  • Thorlund JB, Michalsik LB, Madsen K, Aagaard P (2008) Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match. Scand J Med Sci Sports 18(4):462–472

    Article  PubMed  CAS  Google Scholar 

  • Thorlund JB, Aagaard P, Madsen K (2009) Rapid muscle force capacity changes after soccer match play. Int J Sports Med 30(4):273–278

    Article  PubMed  CAS  Google Scholar 

  • Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513(Pt1):295–305

    Article  PubMed  Google Scholar 

  • Wilkinson DM, Carter JM, Richmond VL, Blacker SD, Rayson MP (2008) The effect of cool water ingestion on gastrointestinal pill temperature. Med Sci Sports Exerc 40(3):523–528

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the volunteers who donated their time and effort to participate in this study and Ivana Matic for her assistance in data collection and analysis. We acknowledge Abdulaziz Mohammed Farooq for valuable assistance with statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Girard.

Additional information

Communicated by Alain Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girard, O., Bishop, D.J. & Racinais, S. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol 113, 359–369 (2013). https://doi.org/10.1007/s00421-012-2444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2444-3

Keywords

Navigation