Skip to main content
Log in

Effects of a high-carbohydrate versus high-protein meal on acute responses to hypoxia at rest and exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

A carbohydrate (CHO) solution consumed before exposure to hypoxia has been reported to reduce arterial oxygen desaturation at rest. The purpose of this study was to determine whether this effect occurred during exercise and when the CHO load is part of a meal. Eleven male subjects (mean age 20.1 ± 1.8 years, BMI 24.3 ± 2.4 kg m2) consumed either a high-CHO (2,340 kJ, 70 % CHO, 12 % protein) or an isoenergetic high-protein (35 % CHO, 48 % protein) breakfast meal 60 min before being exposed to 15 min of hypoxia (FIO2 = 13.5 %) followed by 30 min of exercise in hypoxia (60 % of \( \dot{V}{\text{O}}_{{2{ \max }}} \)). Saturation of oxygen via a pulse oxymeter (SpO2), ventilatory parameters, substrate oxidation, interstitial glucose concentrations, and heart rate variability (HRV) were monitored continuously during the whole session. Results showed no effect from the type of meal on SpO2 at rest but a 3.1 ± 0.4 % reduction of desaturation during exercise (P < 0.005) compared to the high-protein version. This was associated with higher levels of ventilation (P < 0.05) and CO2 production (P < 0.01). Glucose oxidation was higher after the high-CHO than the high-protein breakfast over the whole session (+19.4 + 4.0 %, P < 0.0001), whereas the interstitial glucose levels were increased only at rest (P < 0.001). HRV indices were not different between conditions. In conclusion, a high-CHO meal consumed prior to moderate exercise in hypoxia condition reduced oxygen desaturation compared to a high-protein meal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA (2006) Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 575:937–952

    Article  PubMed  CAS  Google Scholar 

  • Baldari C, Bonavolonta V, Emerenziani GP, Gallotta MC, Silva AJ, Guidetti L (2009) Accuracy, reliability, linearity of Accutrend and Lactate Pro versus EBIO plus analyzer. Eur J Appl Physiol 107:105–111

    Article  PubMed  Google Scholar 

  • Beidleman BA, Rock PB, Muza SR, Fulco CS, Gibson LL, Kamimori GH, Cymerman A (2002) Substrate oxidation is altered in women during exercise upon acute altitude exposure. Med Sci Sports Exerc 34:430–437

    Article  PubMed  CAS  Google Scholar 

  • Bickerman HA, Bouvet W, Harrer CJ, Oyler JR, Seitz CP (1945) Aviation nutrition studies. 1. Effects of pre-flight and in-flight means of varying compositions with respect to carbohydrate, protein and fat. Aviat Med 16:69–84

    Google Scholar 

  • Bigard AX, Douce P, Merino D, Lienhard F, Guezennec CY (1996) Changes in dietary protein intake fail to prevent decrease in muscle growth induced by severe hypoxia in rats. J Appl Physiol 80:208–215

    PubMed  CAS  Google Scholar 

  • Billat LV (1996) Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med 22:157–175

    Article  PubMed  CAS  Google Scholar 

  • Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92–98

    PubMed  CAS  Google Scholar 

  • Bouissou P, Guezennec CY, Defer G, Pesquies P (1987) Oxygen consumption, lactate accumulation, and sympathetic response during prolonged exercise under hypoxia. Int J Sports Med 8:266–269

    Article  PubMed  CAS  Google Scholar 

  • Boyne MS, Silver DM, Kaplan J, Saudek CD (2003) Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes 52:2790–2794

    Article  PubMed  CAS  Google Scholar 

  • Brooks GA, Wolfel EE, Groves BM, Bender PR, Butterfield GE, Cymerman A, Mazzeo RS, Sutton JR, Wolfe RR, Reeves JT (1992) Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m. J Appl Physiol 72:2435–2445

    PubMed  CAS  Google Scholar 

  • Calbet JA, De Paz JA, Garatachea N, Cabeza de Vaca S, Chavarren J (2003) Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 94:668–676

    PubMed  CAS  Google Scholar 

  • Chapman RF, Stager JM, Tanner DA, Stray-Gundersen J, Levine BD (2011) Impairment of 3,000 m run time at altitude is influenced by arterial oxyhemoglobin saturation. Med Sci Sports Exerc 43:1649–1656

    Article  PubMed  CAS  Google Scholar 

  • Charlot K, Pichon A, Chapelot D (2011) Exercise prior to a freely requested meal modifies pre and postprandial glucose profile, substrate oxidation and sympathovagal balance. Nutr Metab (Lond) 8:66

    Article  CAS  Google Scholar 

  • Clarke WL, Anderson S, Farhy L, Breton M, Gonder-Frederick L, Cox D, Kovatchev B (2005) Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis. Diabetes Care 28:2412–2417

    Article  PubMed  CAS  Google Scholar 

  • Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96:3224–3232

    Article  PubMed  CAS  Google Scholar 

  • Eckman M, Barach B et al (1945) Effect of diet on altitude tolerance. J Aviat Med 16:328–340

    PubMed  CAS  Google Scholar 

  • Favret F, Richalet JP (2007) Exercise and hypoxia: the role of the autonomic nervous system. Respir Physiol Neurobiol 158:280–286

    Article  PubMed  Google Scholar 

  • Ferrannini E (1988) The theoretical bases of indirect calorimetry: a review. Metabolism 37:287–301

    Article  PubMed  CAS  Google Scholar 

  • Friedmann B, Bauer T, Menold E, Bartsch P (2004) Exercise with the intensity of the individual anaerobic threshold in acute hypoxia. Med Sci Sports Exerc 36:1737–1742

    Article  PubMed  Google Scholar 

  • Geoffrey M, Brazg R, Richard W (2011) FreeStyle Navigator Continuous Glucose Monitoring System with TRUstart algorithm, a 1-hour warm-up time. J Diabetes Sci Technol 5:99–106

    PubMed  Google Scholar 

  • Golja P, Flander P, Klemenc M, Maver J, Princi T (2008) Carbohydrate ingestion improves oxygen delivery in acute hypoxia. High Alt Med Biol 9:53–62

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez NC, Clancy RL, Moue Y, Richalet JP (1998) Increasing maximal heart rate increases maximal O2 uptake in rats acclimatized to simulated altitude. J Appl Physiol 84:164–168

    PubMed  CAS  Google Scholar 

  • Goodwin ML, Harris JE, Hernandez A, Gladden LB (2007) Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol 1:558–569

    PubMed  Google Scholar 

  • Hansen JE, Hartley LH, Hogan RP 3rd (1972) Arterial oxygen increase by high-carbohydrate diet at altitude. J Appl Physiol 33:441–445

    PubMed  CAS  Google Scholar 

  • Hochachka PW, Beatty CL, Burelle Y, Trump ME, McKenzie DC, Matheson GO (2002) The lactate paradox in human high-altitude physiological performance. News Physiol Sci 17:122–126

    PubMed  CAS  Google Scholar 

  • Hoppeler H, Vogt M (2001) Hypoxia training for sea-level performance. Training high-living low. Adv Exp Med Biol 502:61–73

    PubMed  CAS  Google Scholar 

  • Jeukendrup AE, Wallis GA (2005) Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med 26(Suppl 1):S28–S37

    Article  PubMed  CAS  Google Scholar 

  • Karelis AD, Smith JW, Passe DH, Peronnet F (2010) Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med 40:747–763

    Article  PubMed  Google Scholar 

  • Klemenc M, Golja P (2011) Baroreflex sensitivity in acute hypoxia and carbohydrate loading. Eur J Appl Physiol 111:2509–2515

    Article  PubMed  CAS  Google Scholar 

  • Klemenc M, Maver J, Princi T, Flander P, Golja P (2008) The effect of sucrose ingestion on autonomic nervous system function in young subjects during acute moderate hypoxia. Eur J Appl Physiol 104:803–812

    Article  PubMed  CAS  Google Scholar 

  • Kovatchev BP, Shields D, Breton M (2009) Graphical and numerical evaluation of continuous glucose sensing time lag. Diabetes Technol Ther 11:139–143

    Article  PubMed  Google Scholar 

  • Larsen PD, Tzeng YC, Sin PY, Galletly DC (2010) Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir Physiol Neurobiol 174:111–118

    Article  PubMed  CAS  Google Scholar 

  • Lawless NP, Dillard TA, Torrington KG, Davis HQ, Kamimori G (1999) Improvement in hypoxemia at 4600 meters of simulated altitude with carbohydrate ingestion. Aviat Space Environ Med 70:874–878

    PubMed  CAS  Google Scholar 

  • Lundby C, Van Hall G (2002) Substrate utilization in sea level residents during exercise in acute hypoxia and after 4 weeks of acclimatization to 4100 m. Acta Physiol Scand 176:195–201

    Article  PubMed  CAS  Google Scholar 

  • McNarry MA, Lewis MJ (2012) Heart rate variability reproducibility during exercise. Physiol Meas 33:1123–1133

    Article  PubMed  Google Scholar 

  • Mollard P, Bourdillon N, Letournel M, Herman H, Gibert S, Pichon A, Woorons X, Richalet JP (2010) Validity of arterialized earlobe blood gases at rest and exercise in normoxia and hypoxia. Respir Physiol Neurobiol 172:179–183

    Article  PubMed  Google Scholar 

  • Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90:1826–1831

    Article  PubMed  CAS  Google Scholar 

  • Morel OE, Aubert R, Richalet JP, Chapelot D (2005) Simulated high altitude selectively decreases protein intake and lean mass gain in rats. Physiol Behav 86:145–153

    Article  PubMed  CAS  Google Scholar 

  • Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004) Software for advanced HRV analysis. Comput Methods Programs Biomed 76:73–81

    Article  PubMed  Google Scholar 

  • Oliver SJ, Golja P, Macdonald JH (2012) Carbohydrate supplementation and exercise performance at high altitude: a randomized controlled trial. High Alt Med Biol 13:22–31

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193

    Article  PubMed  CAS  Google Scholar 

  • Paul D, Jacobs KA, Geor RJ, Hinchcliff KW (2003) No effect of pre-exercise meal on substrate metabolism and time trial performance during intense endurance exercise. Int J Sport Nutr Exerc Metab 13:489–503

    PubMed  CAS  Google Scholar 

  • Peronnet F, Massicotte D (1991) Table of nonprotein respiratory quotient: an update. Can J Sport Sci 16:23–29

    PubMed  CAS  Google Scholar 

  • Peronnet F, Massicotte D, Folch N, Melin B, Koulmann N, Jimenez C, Bourdon L, Launay JC, Savourey G (2006) Substrate utilization during prolonged exercise with ingestion of (13)C-glucose in acute hypobaric hypoxia (4,300 m). Eur J Appl Physiol 97:527–534

    Article  PubMed  CAS  Google Scholar 

  • Pinna GD, Maestri R, Torunski A, Danilowicz-Szymanowicz L, Szwoch M, La Rovere MT, Raczak G (2007) Heart rate variability measures: a fresh look at reliability. Clin Sci (Lond) 113:131–140

    Article  Google Scholar 

  • Pitzalis MV, Mastropasqua F, Massari F, Forleo C, Di Maggio M, Passantino A, Colombo R, Di Biase M, Rizzon P (1996) Short- and long-term reproducibility of time and frequency domain heart rate variability measurements in normal subjects. Cardiovasc Res 32:226–233

    Article  PubMed  CAS  Google Scholar 

  • Pivik RT, Dykman RA (2004) Cardiovascular effects of morning nutrition in preadolescents. Physiol Behav 82:295–302

    Article  PubMed  CAS  Google Scholar 

  • Pivik RT, Dykman RA, Tennal K, Gu Y (2006) Skipping breakfast: gender effects on resting heart rate measures in preadolescents. Physiol Behav 89:270–280

    Article  PubMed  CAS  Google Scholar 

  • Pyne DB, Boston T, Martin DT, Logan A (2000) Evaluation of the Lactate Pro blood lactate analyser. Eur J Appl Physiol 82:112–116

    Article  PubMed  CAS  Google Scholar 

  • Rebrin K, Steil GM (2000) Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol Ther 2:461–472

    Article  PubMed  CAS  Google Scholar 

  • Richalet JP, Larmignat P, Poitrine E, Letournel M, Canoui-Poitrine F (2012) Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med 185:192–198

    Article  PubMed  Google Scholar 

  • Rowlands DS, Hopkins WG (2002) Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism 51:678–690

    Article  PubMed  CAS  Google Scholar 

  • Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH (1998) Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart 80:156–162

    PubMed  CAS  Google Scholar 

  • Sutton JR, Coates G, Houston CS (1991) Lake Louise consensus on definition and quantification of altitude illness. In: Sutton JR, Coates G, Houston CS (eds) Hypoxia and mountain medicine. Pergamon Press, New York, pp 327–330

    Google Scholar 

  • Swenson ER, MacDonald A, Vatheuer M, Maks C, Treadwell A, Allen R, Schoene RB (1997) Acute mountain sickness is not altered by a high carbohydrate diet nor associated with elevated circulating cytokines. Aviat Space Environ Med 68:499–503

    PubMed  CAS  Google Scholar 

  • Tanner RK, Fuller KL, Ross ML (2010) Evaluation of three portable blood lactate analysers: lactate Pro, Lactate Scout and Lactate Plus. Eur J Appl Physiol 109:551–559

    Article  PubMed  CAS  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Google Scholar 

  • Wehrlin JP, Hallen J (2006) Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol 96:404–412

    Article  PubMed  Google Scholar 

  • Weippert M, Kumar M, Kreuzfeld S, Arndt D, Rieger A, Stoll R (2010) Comparison of three mobile devices for measuring R–R intervals and heart rate variability: polar S810i, Suunto t6 and an ambulatory ECG system. Eur J Appl Physiol 109:779–786

    Article  PubMed  Google Scholar 

  • Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9

    PubMed  Google Scholar 

  • Welle S, Lilavivat U, Campbell RG (1981) Thermic effect of feeding in man: increased plasma norepinephrine levels following glucose but not protein or fat consumption. Metabolism 30:953–958

    Article  PubMed  CAS  Google Scholar 

  • Whitley HA, Humphreys SM, Campbell IT, Keegan MA, Jayanetti TD, Sperry DA, MacLaren DP, Reilly T, Frayn KN (1998) Metabolic and performance responses during endurance exercise after high-fat and high-carbohydrate meals. J Appl Physiol 85:418–424

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank subjects for their participation.

Conflict of interest

The authors declare no conflict of interest of any kind in this research.

Ethical standards

The authors certify that this experiment complied with the current French laws. The protocol was conducted according to the standards set by the Declaration of Helsinki and was officially approved by the representatives of the regional board of the National Ethics Committee (Comité de Protection des Personnes no 10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Chapelot.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlot, K., Pichon, A., Richalet, JP. et al. Effects of a high-carbohydrate versus high-protein meal on acute responses to hypoxia at rest and exercise. Eur J Appl Physiol 113, 691–702 (2013). https://doi.org/10.1007/s00421-012-2472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2472-z

Keywords

Navigation