Skip to main content

Advertisement

Log in

Crucial transcription factors in tendon development and differentiation: their potential for tendon regeneration

Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tendons that connect muscles to bone are often the targets of sports injuries. The currently unsatisfactory state of tendon repair is largely attributable to the limited understanding of basic tendon biology. A number of tendon lineage-related transcription factors have recently been uncovered and provide clues for the better understanding of tendon development. Scleraxis and Mohawk have been identified as critical transcription factors in tendon development and differentiation. Other transcription factors, such as Sox9 and Egr1/2, have also been recently reported to be involved in tendon development. However, the molecular mechanisms and application of these transcription factors remain largely unclear and this prohibits their use in tendon therapy. Here, we systematically review and analyze recent findings and our own data concerning tendon transcription factors and tendon regeneration. Based on these findings, we provide interaction and temporal programming maps of transcription factors, as a basis for future tendon therapy. Finally, we discuss future directions for tendon regeneration with differentiation and trans-differentiation approaches based on transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alberton P, Popov C, Pragert M, Kohler J, Shukunami C, Schieker M, Docheva D (2012) Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev 21:846–858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson DM, Arredondo J, Hahn K, Valente G, Martin JF, Wilson-Rawls J, Rawls A (2006) Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn 235:792–801

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A, Rajakumar G, Rahuman AA (2012) Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. J Cell Mol Med 16:1991–2000

    Article  CAS  PubMed  Google Scholar 

  • Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG, Butler DL (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431

    Article  CAS  PubMed  Google Scholar 

  • Becker S, Pasca G, Strumpf D, Min L, Volk T (1997) Reciprocal signaling between Drosophila epidermal muscle attachment cells and their corresponding muscles. Development 124:2615–2622

    CAS  PubMed  Google Scholar 

  • Benjamin M, Ralphs JR (1997) Tendons and ligaments—an overview. Histol Histopathol 12:1135–1144

    CAS  PubMed  Google Scholar 

  • Benjamin M, Ralphs JR (2000) The cell and developmental biology of tendons and ligaments. Int Rev Cytol 196:85–130

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Blitz E, Sharir A, Akiyama H, Zelzer E (2013) Tendon-bone attachment unit is formed modularly by a distinct pool of Scx and Sox9-positive progenitors. Development 140:2680–2690

    Article  CAS  PubMed  Google Scholar 

  • Brent AE, Tabin CJ (2004) FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 131:3885–3896

    Article  CAS  PubMed  Google Scholar 

  • Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113:235–248

    Article  CAS  PubMed  Google Scholar 

  • Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515–528

    Article  CAS  PubMed  Google Scholar 

  • Carlberg AL, Tuan RS, Hall DJ (2000) Regulation of scleraxis function by interaction with the bHLH protein E47. Mol Cell Biol Res Commun 3:82–86

    Article  CAS  PubMed  Google Scholar 

  • Chen JL, Yin Z, Shen WL, Chen X, Heng BC, Zou XH, Ouyang HW (2010) Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 31:9438–9451

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Song XH, Yin Z, Zou XH, Wang LL, Hu H, Cao T, Zheng M, Ouyang HW (2009) Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells 27:1276–1287

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yin Z, Chen JL, Shen WL, Liu HH, Tang QM, Fang Z, Lu LR, Ji J, Ouyang HW (2012) Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes. Sci Rep 2:977

    PubMed Central  PubMed  Google Scholar 

  • Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN (1995) Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 121:1099–1110

    CAS  PubMed  Google Scholar 

  • Docheva D, Hunziker EB, Fassler R, Brandau O (2005) Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25:699–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edom-Vovard F, Duprez D (2004) Signals regulating tendon formation during chick embryonic development. Dev Dyn 229:449–457

    Article  CAS  PubMed  Google Scholar 

  • Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D (2002) Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol 247:351–366

    Article  CAS  PubMed  Google Scholar 

  • Egli RJ, Luginbuehl R (2012) Tissue engineering—nanomaterials in the musculoskeletal system. Swiss Med Wkly 142:w13647

    PubMed  Google Scholar 

  • Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T (2010) Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol 42:148–156

    Article  CAS  PubMed  Google Scholar 

  • Giordani J, Bajard L, Demignon J, Daubas P, Buckingham M, Maire P (2007) Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proc Natl Acad Sci U S A 104:11310–11315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grifone R, Laclef C, Spitz F, Lopez S, Demignon J, Guidotti JE, Kawakami K, Xu PX, Kelly R, Petrof BJ et al (2004) Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol Cell Biol 24:6253–6267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grifone R, Demignon J, Giordani J, Niro C, Souil E, Bertin F, Laclef C, Xu PX, Maire P (2007) Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev Biol 302:602–616

    Article  CAS  PubMed  Google Scholar 

  • Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y et al (2013) Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest 123:3564–3576

    Article  CAS  PubMed  Google Scholar 

  • Gulotta LV, Rodeo SA (2011) Emerging ideas: evaluation of stem cells genetically modified with scleraxis to improve rotator cuff healing. Clin Orthop Relat Res 469:2977–2980

    Article  PubMed Central  PubMed  Google Scholar 

  • Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA (2011) Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 39:1282–1289

    Article  PubMed  Google Scholar 

  • Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ, Wenstrup RJ (2004) Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res 22:998–1003

    Article  CAS  PubMed  Google Scholar 

  • Hart DA, Kydd A, Reno C (1999) Gender and pregnancy affect neuropeptide responses of the rabbit Achilles tendon. Clin Orthop Relat Res 365:237–246

    Article  PubMed  Google Scholar 

  • Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N (2011) Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest 121:640–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475:386–389

    Article  CAS  PubMed  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, Sadahiro T, Umei T, Wada R, Katsumata Y, Kaneda R, Nakade K et al (2012) Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of gata4, mef2c, and tbx5. Circ Res 111:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, Nishida K, Akimoto T, Takahashi M, Miyaki S et al (2010) The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci U S A 107:10538–10542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawa-uchi T, Nifuji A, Mataga N, Olson EN, Bonaventure J, Shinomiya K, Liu Y, Noda M (1998) Fibroblast growth factor downregulates expression of a basic helix-loop-helix-type transcription factor, scleraxis, in a chondrocyte-like cell line, TC6. J Cell Biochem 70:468–477

    Article  CAS  PubMed  Google Scholar 

  • Kimura W, Machii M, Xue X, Sultana N, Hikosaka K, Sharkar MT, Uezato T, Matsuda M, Koseki H, Miura N (2011) Irxl1 mutant mice show reduced tendon differentiation and no patterning defects in musculoskeletal system development. Genesis 49:2–9

    Article  CAS  PubMed  Google Scholar 

  • Kryger GS, Chong AK, Costa M, Pham H, Bates SJ, Chang J (2007) A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering. J Hand Surg [Am] 32:597–605

    Article  Google Scholar 

  • Laclef C, Hamard G, Demignon J, Souil E, Houbron C, Maire P (2003) Altered myogenesis in Six1-deficient mice. Development 130:2239–2252

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, VijayRaghavan K, Celniker SE, Tanouye MA (1995) Identification of a Drosophila muscle development gene with structural homology to mammalian early growth response transcription factors. Proc Natl Acad Sci U S A 92:10344–10348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lejard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, Noda M, Duprez D, Houillier P, Rossert J (2007) Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem 282:17665–17675

    Article  CAS  PubMed  Google Scholar 

  • Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, Malbouyres M, Bidaud CB, Maro G, Gilardi-Hebenstreit P et al (2011) EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem 286:5855–5867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Liu W, Maltby KM, Lan Y, Jiang R (2006) Identification and developmental expression analysis of a novel homeobox gene closely linked to the mouse Twirler mutation. Gene Expr Patterns 6:632–636

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Watson SS, Lan Y, Keene DR, Ovitt CE, Liu H, Schweitzer R, Jiang R (2010) The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol Cell Biol 30:4797–4807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Cserjesi P, Nifuji A, Olson EN, Noda M (1996) Sclerotome-related helix-loop-helix type transcription factor (scleraxis) mRNA is expressed in osteoblasts and its level is enhanced by type-beta transforming growth factor. J Endocrinol 151:491–499

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Nifuji A, Tamura M, Wozney JM, Olson EN, Noda M (1997) Scleraxis messenger ribonucleic acid is expressed in C2C12 myoblasts and its level is down-regulated by bone morphogenetic protein-2 (BMP2). J Cell Biochem 67:66–74

    Article  CAS  PubMed  Google Scholar 

  • Lui PP, Chan KM (2011) Tendon-derived stem cells (TDSCs): from basic science to potential roles in tendon pathology and tissue engineering applications. Stem Cell Rev 7:883–897

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R et al (2011) Conversion of mechanical force into TGF-beta-mediated biochemical signals. Curr Biol 21:933–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendias CL, Gumucio JP, Lynch EB (2012) Mechanical loading and TGF-beta change the expression of multiple miRNAs in tendon fibroblasts. J Appl Physiol 113:56–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, Schweitzer R (2007) Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134:2697–2708

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Rui YF, Tan Q, Liu Y, Xu LL, Chan KM, Wang Y, Li G (2013) Engineered scaffold-free tendon tissue produced by tendon-derived stem cells. Biomaterials 34:2024–2037

    Article  CAS  PubMed  Google Scholar 

  • Niro C, Demignon J, Vincent S, Liu Y, Giordani J, Sgarioto N, Favier M, Guillet-Deniau I, Blais A, Maire P (2010) Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome. Dev Biol 338:168–182

    Article  CAS  PubMed  Google Scholar 

  • Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 151:247–254

    Article  CAS  PubMed  Google Scholar 

  • Nixon AJ, Watts AE, Schnabel LV (2012) Cell and gene based approaches to tendon regeneration. J Shoulder Elbow Surg 21:278–294

    Article  PubMed  Google Scholar 

  • Oliver G, Wehr R, Jenkins NA, Copeland NG, Cheyette BN, Hartenstein V, Zipursky SL, Gruss P (1995) Homeobox genes and connective tissue patterning. Development 121:693–705

    CAS  PubMed  Google Scholar 

  • Olson EN, Brown D, Burgess R, Cserjesi P (1996) A new subclass of helix-loop-helix transcription factors expressed in paraxial mesoderm and chondrogenic cell lineages. Ann N Y Acad Sci 785:108–118

    Article  CAS  PubMed  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parma P, Radi O (2012) Molecular mechanisms of sexual development. Sex Dev 6:7–17

    Article  CAS  PubMed  Google Scholar 

  • Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dunker N, Schweitzer R (2009) Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development 136:1351–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richard AF, Demignon J, Sakakibara I, Pujol J, Favier M, Strochlic L, Le GF, Sgarioto N, Guernec A, Schmitt A et al (2011) Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Dev Biol 359:303–320

    Article  CAS  PubMed  Google Scholar 

  • Rui YF, Lui PP, Wong YM, Tan Q, Chan KM (2013) BMP-2 stimulated non-tenogenic differentiation and promoted proteoglycan deposition of tendon-derived stem cells (TDSCs) in vitro. J Orthop Res 31:746–753

    Article  CAS  PubMed  Google Scholar 

  • Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, Nifuji A, Noda M (2003) Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 287:289–300

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:3855–3866

    CAS  PubMed  Google Scholar 

  • Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116

    Article  CAS  PubMed  Google Scholar 

  • Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, Scherer G, Sander M (2007) SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci U S A 104:1865–1870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen W, Chen J, Yin Z, Chen X, Liu H, Heng BC, Chen W, Ouyang HW (2012) Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair. Cell Transplant 21:943–958

    Article  PubMed  Google Scholar 

  • Shukunami C, Takimoto A, Oro M, Hiraki Y (2006) Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol 298:234–247

    Article  CAS  PubMed  Google Scholar 

  • Smith TG, Sweetman D, Patterson M, Keyse SM, Munsterberg A (2005) Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development 132:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H (2010) Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis 48:635–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, Hiraki Y, Shukunami C (2013) Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development 140:2280–2288

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi JK, Bruneau BG (2007) Irxl1, a divergent Iroquois homeobox family transcription factor gene. Gene Expr Patterns 7:51–56

    Article  CAS  PubMed  Google Scholar 

  • Taraballi F, Wang S, Li J, Lee FY, Venkatraman SS, Birch WR, Teoh SH, Boey FY, Ng KW (2012) Understanding the nano-topography changes and cellular influences resulting from the surface adsorption of human hair keratins. Adv Health Mater 1:513–519

    Article  CAS  Google Scholar 

  • Tashiro K, Inamura M, Kawabata K, Sakurai F, Yamanishi K, Hayakawa T, Mizuguchi H (2009) Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells 27:1802–1811

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Massou S, Benoliel AM, Bongrand P, Hanbucken M, Sengupta K (2012) Depth matters: cells grown on nano-porous anodic alumina respond to pore depth. Nanotechnology 23:255101

    Article  CAS  PubMed  Google Scholar 

  • Tozer S, Duprez D (2005) Tendon and ligament: development, repair and disease. Birth Defects Res C Embryo Today 75:226–236

    Article  CAS  PubMed  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu PX, Cheng J, Epstein JA, Maas RL (1997) Mouse Eya genes are expressed during limb tendon development and encode a transcriptional activation function. Proc Natl Acad Sci U S A 94:11974–11979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Z, Chen X, Chen JL, Shen WL, Hieu NTM, Gao L, Ouyang HW (2010) The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 31:2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang G, Liu Y, Zhao X, Zou D, Zhu C, Jin Y, Huang Q, Sun J, Liu X et al (2013) The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 34:3184–3195

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J (2012) Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev 21:2364–2373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bruce for checking the spelling and grammar in this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Chen or Hongwei OuYang.

Additional information

H. Liu and S. Zhu contributed equally to this paper.

The authors contributed to this review as follows: H. Liu, concept and design, data analysis and interpretation and manuscript writing; S. Zhu, collection and/or assembly of data and manuscript writing; C. Zhang, collection and/or assembly of data; P. Lu, data analysis and interpretation; J. Hu, data analysis and interpretation; Z. Yin, data analysis and interpretation; Y. Ma, data analysis and interpretation; X. Chen, concept and design; H. Ouyang, concept and design, final approval of manuscript and arrangement of financial support.

This work was supported by NSFC grants (81330041, 81125014, 31271041, 81201396, J1103603), the National Key Scientific Program (2012CB966604) and the National High Technology Research and Development Program of China (863 Program, no. 2012AA020503). It was sponsored by Regenerative Medicine in Innovative Medical Subjects of Zhejiang Province and Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents and Medical and health science and technology plan of department of Health of Zhejiang Province (2013RCA010).

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhu, S., Zhang, C. et al. Crucial transcription factors in tendon development and differentiation: their potential for tendon regeneration. Cell Tissue Res 356, 287–298 (2014). https://doi.org/10.1007/s00441-014-1834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1834-8

Keywords

Navigation