Skip to main content
Log in

The Influence of Noncollagenous Matrix Components on the Micromechanical Environment of Tendon Fascicles

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tendon is composed of type I collagen fibers, interspersed with proteoglycan matrix and cells. Glycosaminoglycans may play a role in maintaining the structural integrity of tendon, preventing excessive shearing between collagen components. This study tests the hypothesis that tendon extension mechanisms can be altered by modifying the composition of noncollagenous matrix. Tendon explants were treated with phosphate buffered saline (PBS) or PBS + 0.5 U ml−1 chondroitinase ABC. Structural changes were examined using TEM and biochemical analysis, while strain response was examined using confocal microscopy and gross mechanical characterization. Chondroitinase ABC removed 90% of glycosaminoglycans from the matrix. Results demonstrated significant swelling of fibrils and surrounding matrix when incubated in either solution. In response to applied strain, PBS incubated samples demonstrated significantly less sliding between adjacent fibers than nonincubated, and a 33% reduction in maximum force. By contrast, fascicles incubated in chondroitinase ABC demonstrated a similar strain response to nonincubated. Data indicate that collagen-proteoglycan binding characteristics can be influenced by incubation and this, in turn, can influence the preferred extension mechanisms adopted by fascicles. This highlights the importance of maintaining fascicles within their natural environment to prevent structural or mechanical changes prior to subsequent analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abrahams. Mechanical behaviour of tendon in vitro. Med. Biol. Eng. 5:433–443, 1967.

    PubMed  Google Scholar 

  2. Arnoczky, S. P., M. Lavagnino, J. H. Whallon, and A. Hoonjan. In situ cell nucleus deformation in tendons under tensile load; a mophological analysis using confocal laser microscopy. J.Orthop. Res. 20:29–35, 2002.

    Google Scholar 

  3. Bailey, A. J., S. P. Robins, and G. Balian. Biological significance of the intermolecular crosslinks of collagen. Nature 251:105–109, 1974.

    Article  PubMed  Google Scholar 

  4. Banes, A. J., M. Tsuzaki, J. Yamamoto, T. Fischer, B. Brigman, T. Brown, and L. Miller. Mechanoreception at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals. Biochem. Cell Biol. 73:349–365, 1995.

    PubMed  Google Scholar 

  5. Benjamin, M., and J. R. Ralphs. Tendons and ligaments: An overview. Histol. Histopathol. 12:1135–1144, 1997.

    PubMed  Google Scholar 

  6. Berenson, M. C., F. T. Blevins, A. H. Plaas, and K. G. Vogel. Proteoglycans of human rotator cuff tendons. J. Orthop. Res. 14:518–525, 1996.

    Article  PubMed  Google Scholar 

  7. Blevin, F. T. Structure, function and adaptation of tendon. Curr. Opin. Orthop. 7(5): 57–61, 1996.

    Google Scholar 

  8. Blevins, F. T., M. Djurasovic, E. L. Flatow, and K. G. Vogel. Biology of the rotator cuff tendon. Orthop. Clin. N. Am. 28(1):1–15, 1997.

    Article  Google Scholar 

  9. Chimich, D., N. Shrive, C. Frank, L. Marchuk, and R. Bray. Water content alters viscoelastic behavior of the normal adolescent rabbit medial collateral ligament. J. Biomech. 25(8):831–837, 1992.

    Article  PubMed  Google Scholar 

  10. Covizi, D. Z., S. L. Felisbino, L. Gomes, E. R. Pimentel, and H. F. Carvalho. Regional adaptations in three rat tendons. Tissue Cell 33(5):483–490, 2001.

    Article  PubMed  Google Scholar 

  11. Cribb, A. M., and J. E. Scott. Tendon response to tensile stress: An ultrastructural investigation of collagen: Proteoglycan interactions in stressed tendon. J. Anat. 187:423–428, 1995.

    PubMed  Google Scholar 

  12. Evered, D., and J. Whelan. Function of Proteogylcans. London: Wiley Interscience, 1986.

    Google Scholar 

  13. Farndale, R. W., C. A. Sayers, and A. J. Barrett. A direct spectrophotometric microassay for sulphated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9:247–248, 1982.

    PubMed  Google Scholar 

  14. Kastelic, J., and E. Baer. Deformation in tendon collagen. Symp. Soc. Exp. Biol. 34:397–435, 1980.

    PubMed  Google Scholar 

  15. Kastelic, J., A. Galeski, and E. Baer. The multicomposite structure of tendon. Connect. Tissue Res. 6:11–23, 1978.

    PubMed  Google Scholar 

  16. Koob, T. Effects of chondroitinase-ABC on proteoglycans and swelling properties of fibrocartilage in bovine flexor tendon. J. Orthop. Res. 7:219–227, 1989.

    Article  PubMed  Google Scholar 

  17. Lee, D. A., E. Assoku, and V. Doyle. A specific quantitative assay for collagen synthesis by cells seeded in collagen-based biomaterials using Sirius Red precipitation. J. Mater. Sci. 9:47–51, 1998.

    Article  Google Scholar 

  18. Maganaris, C. N., and J. P. Paul. In vivo human tendon mechanical properties. J. Physiol. 521(1):307–313, 1999.

    Article  PubMed  Google Scholar 

  19. McNeilly, C., A. J. Banes, and J. R. Ralphs. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J. Anat. 189:593–600, 1996.

    PubMed  Google Scholar 

  20. Millesi, H., R. Reihsner, G. Hamilton, and R. Mallinger. Biomechanical properties of normal tendons, normal palmar aponeuroses, and tissues from patients with Dupuytren’s disease subjected to elastase and chondroitinase treatment. Clin. Biomech. 10:29–35, 1995.

    Article  Google Scholar 

  21. Minns, R. J., and P. D. Soden. The role of the fibrous components and ground substance in the mechanical properties of biological tissues: A preliminary investigation. J. Biomech. 6:153–165, 1973.

    Article  PubMed  Google Scholar 

  22. Parry, D. A. D., M. H. Flint, G. C. Gillard, and A. S. Craig. A role for glycosaminoglycans in the development of collagen fibrils. FEBS Lett. 149(1):1–7, 1982.

    Article  PubMed  Google Scholar 

  23. Pogány, G., D. J. Hernandez, and K. G. Vogel. The in vitro interaction of proteoglycans with type I collagen is modulated by phosphate. Arch. Biochem. Biophys. 313(1):102–111, 1994.

    Article  PubMed  Google Scholar 

  24. Puxkandl, R., I. Zizak, O. Paris, J. Keckes, W. Tesch, S. Bernstorff, P. P. Purslow, and P. Fratzl. Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Proc. R. Soc. Lond. B 357:191–197, 2002.

    Article  Google Scholar 

  25. Ralphs, J. R. Cell biology of tendons. Eur. Cell. Mater. J. 4(S1):39–40, 2002.

    Google Scholar 

  26. Raspanti, M., T. Congiu, A. Alessandrini, P. Gobbi, and A. Ruggeri. Different patterns of collagen–proteoglycan interaction: A scanning electron microscopy and atomic force microscopy study. Eur. J. Histochem. 44:335–343, 2000.

    PubMed  Google Scholar 

  27. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208–212, 1963.

    Article  PubMed  Google Scholar 

  28. Scott, J. E. Proteoglycan–fibrillar collagen interactions. Biochem. J. 252:13–323, 1988.

    Google Scholar 

  29. Scott, J. E. Proteoglycan: Collagen interaction and subfibrillar structure in collagen fibrils. Implications in the development and ageing of connective tissues. J. Anat. 169:23–35, 1990.

    PubMed  Google Scholar 

  30. Scott, J. E. Elasticity in extracellular matrix shape modules of tendon, cartilage etc. A sliding proteoglycan-filament model. J. Physiol. 55(2):335–343, 2003.

    Article  Google Scholar 

  31. Scott, J. E., and R. Orford. Dermatan sulphate-rich proteoglycan associates with rat-tail tendon collagen at the d band in the gap region. Biochem. J. 197:213–216, 1981.

    PubMed  Google Scholar 

  32. Scott, J. E., R. Orford, and E. W. Hughes. Proteoglycan-collagen arrangements in developing rat tail tendon. Biochem. J. 195:573–581, 1981.

    PubMed  Google Scholar 

  33. Screen, H. R. C., D. A. Lee, D. L. Bader, and J. C. Shelton. Development of a technique to determine strains in tendons using the cell nuclei. Biorheology 40:361–368, 2003.

    PubMed  Google Scholar 

  34. Screen, H. R. C., D. A. Lee, D. L. Bader, and J. C. Shelton. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. J. Eng. Med. 218:109–119, 2004.

    Google Scholar 

  35. Vogel, K. G., and A. B. Meyers. Proteins in the tensile region of adult bovine deep flexor tendon. Clin. Orthop. 367:S344–S355, 1999.

    Article  PubMed  Google Scholar 

  36. Vogel, K. G., M. Paulsson, and D. Heinegard. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 223:587–597, 1984.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel R. C. Screen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Screen, H.R.C., Shelton, J.C., Chhaya, V.H. et al. The Influence of Noncollagenous Matrix Components on the Micromechanical Environment of Tendon Fascicles. Ann Biomed Eng 33, 1090–1099 (2005). https://doi.org/10.1007/s10439-005-5777-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-5777-9

Keywords

Navigation