Skip to main content

Advertisement

Log in

Mendelian Randomization: Application to Cardiovascular Disease

  • Pathogenesis of Hypertension: Genetic and Environmental Factors (DT O’Connor, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

In the absence of an ethical, practical, and economical randomized trial, the epidemiologist is left to explore other methods in efforts to assert causality. An approach based on genotypic variation has the potential to mitigate against some of the problems found within conventional observational studies. Genetic variations associated with risk factors of interest at the population level can be used as proxy measures for these risk factors and to generate estimates of causal effect. The potential and the possible limitations of this approach within the cardiovascular field are presented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Raven PH, Johnson GB, Losos JB, Singer SR. Biology: seventh edition. McGraw-Hill Companies Publishers; 2005: chapter 44.

  2. • Brown IJ, Elliott P. Recent findings from Mendelian randomization studies of cardiovascular disease. Curr Cardio Risk Rep. 2010;4:429–36.

    Article  Google Scholar 

  3. Davey Smith G, Ebrahim S. ‘Mendelian randomisation’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.

    Article  PubMed  Google Scholar 

  4. Davey Smith G, Ebrahim S. Mendelian randomisation: prospects, potentials and limitations. Int J Epidemiol. 2004;33:30–42.

    Article  Google Scholar 

  5. Davey Smith G, Timpson NJ, Ebrahim S. Strengthening causal inference in cardiovascular epidemiology through Mendelian randomization. Ann Med. 2008;40:524–41.

    Article  Google Scholar 

  6. Davey Smith G, Lawlor DA, Harbord RM, Timpson NJ, Day I, et al. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med / Publ Libr Sci. 2007;4:e352.

    Google Scholar 

  7. Lawlor DA, Harbord RM, Sterne JAC, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.

    Article  PubMed  Google Scholar 

  8. Hingorani A, Humphries S. Nature’s randomised trials. Lancet. 2005;366:1906–8.

    Article  PubMed  Google Scholar 

  9. Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29:722–9.

    Article  PubMed  CAS  Google Scholar 

  10. •• Timpson N, Harbord R, Davey Smith G, et al. Does greater adiposity increase blood pressure and hypertension risk? Mendelian randomization using the FT0/MC4R genotype. Hypertension. 2009;54:84–90.

    Article  PubMed  CAS  Google Scholar 

  11. Brennan P, McKay J, Moore L, et al. Obesity and cancer: Mendelian randomization approach utilizing the FTO genotype. Int J Epidemiol. 2009;38:971–5.

    Article  PubMed  Google Scholar 

  12. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposed to childhood and adult obesity. Science. 2007;316:889–94.

    Article  PubMed  CAS  Google Scholar 

  13. Scuteri A, Sanna S, Chen W, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genetics. 2007;20:e115.

    Article  Google Scholar 

  14. Freathy RM, Timpson NJ, Lawlor DA, et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes. 2008;57:1419–26.

    Article  PubMed  CAS  Google Scholar 

  15. Loos RJF, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40:768–75.

    Article  PubMed  CAS  Google Scholar 

  16. Marmot MG, Elliott P, Shipley MJ, et al. Alcohol and blood pressure: the INTERSALT study. BMJ. 1994;308:1263–7.

    Article  PubMed  CAS  Google Scholar 

  17. Patel R, Lawlor DA, Whincup P, et al. The detection, treatment and control of high blood pressure in older British adults: cross-sectional findings from the British Women’s Heart and Health Study and the British Regional Heart Study. J Hum Hypertens. 2006;20:733–41.

    Article  PubMed  CAS  Google Scholar 

  18. Fuchs FD, Chambless LE, Whelton PK, et al. Alcohol consumption and the incidence of hypertension: the atheroschlerosis risk in Communities Study. Hypertension. 2001;37:1242–50.

    PubMed  CAS  Google Scholar 

  19. Moore RD, Levine DM, Southard J, et al. Alcohol consumption and blood pressure in the 1982 Maryland Hypertension Survey. Am J Hypertens. 1990;3:1–7.

    PubMed  CAS  Google Scholar 

  20. Chen L, Smith G, Harbord RM, et al. Alcohol intake and blood pressure; a systematic review implementing a Mendelian randomization approach. PLoS Med. 2008;5:e52.

    Article  PubMed  Google Scholar 

  21. Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci U S A. 1984;81:258–61.

    Article  PubMed  CAS  Google Scholar 

  22. Enomoto N, Takase S, Yasuhara M, Takada A. Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res. 1991;15:141–4.

    Article  PubMed  CAS  Google Scholar 

  23. Amamoto K, Okamura T, Tamaki S, et al. Epidemiologic study of the association of low-K-m mitochondrial acetaldehyde dehydrogenase genotypes with blood pressure level and the prevalence of hypertension in a general population. Hypertens Res. 2002;25:857–64.

    Article  PubMed  CAS  Google Scholar 

  24. Takagi S, Baba S, Iwai N, et al. The aldehyde dehydrogenase-2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita Study. Hypertens Res. 2001;24:365–70.

    Article  PubMed  CAS  Google Scholar 

  25. Kato N, Takeuchi F, Tabara Y, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nature Genetics 2011;43:531–538.

    Article  PubMed  CAS  Google Scholar 

  26. • Elliot P, Chambers JC, Zhang W, et al.. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA. 2009;302:37–48.

    Article  Google Scholar 

  27. • The Emerging Risk Factors Collaboration (ERFC): C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375:132–40.

    Article  Google Scholar 

  28. Danesh J, Whincup P, Walker M, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ. 2000;321:199–204.

    Article  PubMed  CAS  Google Scholar 

  29. • Keavney B. C reactive protein and the risk of cardiovascular disease. BMJ Editorials. 2011;342:393–4.

    Google Scholar 

  30. Timpson NJ, Lawlor DA, Harbord RM, et al. C-reactive protein and its role in metabolic syndrome: Mendelian randomisation study. Lancet. 2005;366:1954–9.

    Article  PubMed  CAS  Google Scholar 

  31. Lowe GD, Rumley A, Wannamethee SG. Hemostatic abnormalities associated with obesity and the metabolic syndrome. J Thromb Haemost. 2005;3:1076–8.

    Article  CAS  Google Scholar 

  32. Frolich M, Imhof A, Berg G, et al. Association between C-reactive protein and features of the metabolic syndrome: a population based study. Diabetes Care. 2000;23:1835–9.

    Article  Google Scholar 

  33. Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387–97.

    Article  PubMed  CAS  Google Scholar 

  34. Szalai AJ, Wu J, Lange EM, et al. Single-nucleotide polymorphisms in the C-reactive protein (CRP) gene promoter that affect transcription factor binding, alter transcriptional activity, and associate with differences in baseline serum CRP level. J Mol Med. 2005;83:440–7.

    Article  PubMed  CAS  Google Scholar 

  35. Davey Smith G, Lawlor DA, Harbord R, et al. Association of C-reactive protein with blood pressure and hypertension: life course confounding and Mendelian randomization tests of causality. Arterioscler Thromb Vasc Biol. 2005;25:1051–6.

    Article  PubMed  Google Scholar 

  36. •• C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC). Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548.

    Article  Google Scholar 

  37. Pepys MB, Hirschfield GM, Tennent GA, et al. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature. 2006;440:1217–21.

    Article  PubMed  CAS  Google Scholar 

  38. •• Nordestgaard BG, Tybjærg-Hansen A. Genetic determinants of LDL, lipoprotein(a), triglyceride-rich lipoproteins and HDL: concordance and discordance with cardiovascular disease risk. Curr Opin Lipidol. 2011;22:113–22.

    Article  PubMed  CAS  Google Scholar 

  39. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352:29–38.

    Article  PubMed  CAS  Google Scholar 

  40. Linsel-Nitschke P, Samani NJ, Schunkert H. Sorting out cholesterol and coronary artery disease. N Engl J Med. 2010;363:2462–3.

    Article  PubMed  CAS  Google Scholar 

  41. • Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466:714–9.

    Article  PubMed  CAS  Google Scholar 

  42. Cohen JC, Boerwinkle E, Mosely Jr TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  PubMed  CAS  Google Scholar 

  43. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  PubMed  CAS  Google Scholar 

  44. Waterworth DM, Ricketts SL, Song K, et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol. 2010;30:2264–76.

    Article  PubMed  CAS  Google Scholar 

  45. Hegele RA. Genome-wide association studies of plasma lipids: have we reached the limit? Arterioscler Thromb Vasc Biol. 2010;30:2084–6.

    Article  PubMed  CAS  Google Scholar 

  46. Musunuru K, Kathiresan S. Genetics of coronary artery disease. Annu Rev Genom Hum Genet. 2010;11:91–108.

    Article  CAS  Google Scholar 

  47. Kathiresan S, Voight BF, Purcell S, et al. Genome-wide association of early onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–41.

    Article  PubMed  CAS  Google Scholar 

  48. Linsel-Nitschke P, Heeren J, Aherrahrou Z, et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis. 2010;208:183–9.

    Article  PubMed  CAS  Google Scholar 

  49. Polisecki E, Peter I, Simon JS, et al. Genetic variation at the NPC1L1 gene locus, plasma lipoproteins, and heart disease risk in the elderly. J Liposome Res. 2010;51:1201–7.

    CAS  Google Scholar 

  50. Benn M, Nordestgaard BG, Grande P, et al. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55:2833–42.

    Article  PubMed  CAS  Google Scholar 

  51. Newton-Cheh C, Smith JG. What can human genetics teach us about the causes of cardiovascular disease? J Am Coll Cardiol. 2010;55:2843–5.

    Article  PubMed  CAS  Google Scholar 

  52. Kamstrup PR, Tybjærg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301:2331–9.

    Article  PubMed  CAS  Google Scholar 

  53. Kamstrup PR, Benn M, Tybjærg-Hansen A, Nordestgaard BG. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart Study. Circulation. 2008;117:176–84.

    Article  PubMed  CAS  Google Scholar 

  54. Langsted A, Freiberg JJ, Tybjæg-Hansen A, et al. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270:65–75.

    Article  PubMed  CAS  Google Scholar 

  55. Sarwar N, Sandhu MS, Ricketts SL, et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet. 2010;375:1634–9.

    Article  PubMed  CAS  Google Scholar 

  56. Pare G, Anand SS. Mendelian randomisation, triglycerides, and CHD. Lancet. 2010;375:1584–6.

    Article  PubMed  Google Scholar 

  57. Pollin TI, Damcott CM, Shen H, et al. A null mutation in human APOC3 confers a favourable plasma lipid profile and apparent cardioprotection. Science. 2008;322:1702–5.

    Article  PubMed  CAS  Google Scholar 

  58. Frikke-Schmidt R, Nordestgaard BG, Stene MC, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299:2524–32.

    Article  PubMed  CAS  Google Scholar 

  59. Johannsen TH, Kamstrup PR, Andersen RV, et al. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease. J Clin Endocrinol Metab. 2009;94:1264–73.

    Article  PubMed  CAS  Google Scholar 

  60. The International Consortium for Blood Pressure genome-wide association studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011. doi:10.1038/nature10405.

  61. Jürgens G, Graudal NA. Effects of low sodium diet versus high sodium diet on blood pressure, rennin, aldosterone, catecholamines, cholesterols, and triglyceride. Cochrane Database Syst Rev. 2004;(1):CD004022. doi:10.1002/14651858.CD004022.pub2

  62. He FJ, MacGregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev. 2004;(3):CD004937. doi:10.1002/14651858.CD004937

  63. Suckling RJ, He FJ, MacGregor GA. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2010;(12):CD006763. doi:10.1002/14651858.CD006763.pub2

  64. Intersalt Cooperative Research Group. Intersalt. An international study of electrolyte excretion and blood pressure: results for 24 h urinary sodium and potassium excretion. BMJ. 1998;297:319–28.

    Google Scholar 

  65. Fava C, Montagnana M, Rosberg L, et al. Subjects heterozygous for genetic loss of function of the thiazide-sensitive co-transporter have reduced blood pressure. Hum Mol Genet. 2008;17:413–8.

    Article  PubMed  CAS  Google Scholar 

  66. Ritz E. Review article: salt and hypertension. Nephrology. 2010;15:49–52.

    Article  PubMed  Google Scholar 

  67. Tesson F, Leenen FHH. Still building on candidate-gene strategy in hypertension? Hypertension. 2007;50:607–8.

    Article  PubMed  CAS  Google Scholar 

  68. Büsst CJ, Scurrah KJ, Ellis JA, Harrap SB. Selective genotyping reveals association between the epithelial sodium channel γ-subunit and systolic blood pressure. Hypertension. 2007;50:672–8.

    Article  PubMed  Google Scholar 

  69. Barlassina C, Dal Fiume C, Lanzani C, et al. Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum Mol Genet. 2007;16:1630–8.

    Article  PubMed  CAS  Google Scholar 

  70. Khaw KT, Bingham S, Welch A, et al. Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. European Prospective Investigation into Cancer and Nutrition. Lancet. 2001;357:657–63.

    Article  PubMed  CAS  Google Scholar 

  71. Lawlor DA, Davey Smith G, Bruckdorfer KR, Kundu D, Ebrahim S. Those confounded vitamins: what can we learn from the difference between observational versus randomised trial evidence. Lancet. 2004;363:1724–7.

    Article  PubMed  Google Scholar 

  72. Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr. 1999;69:1086–107.

    PubMed  CAS  Google Scholar 

  73. • Timpson NJ, Forouhi NG, Brion MJ, et al. Genetic variation at the SLC23A1 locus is associated with circulating concentrations of L-ascorbic acid (vitamin C): evidence from 5 independent studies with >15,000 participants. Am J Clin Nutr. 2010;92:375–82.

    Article  PubMed  CAS  Google Scholar 

  74. Alderman M, Aiyer KJV. Uric acid: role in cardiovascular disease and effects of losartan. Curr Med Res Opin. 2004;1:369–79.

    Article  Google Scholar 

  75. Bos MJ, Koudstaal PJ, Hofman A, Witteman JCM, Breteler MMB. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke. 2006;1:1503–7.

    Article  Google Scholar 

  76. Deveci OS, Kabakci G, Okutucu S, et al. The association between serum uric acid level and coronary artery disease. Int J Clin Pract. 2010;64:900–7.

    Article  CAS  Google Scholar 

  77. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality: the NHANES I epidemiologic follow-up study, 1971–1992. JAMA. 2000;10:2404–10.

    Article  Google Scholar 

  78. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res. 2010;62:170–80.

    Google Scholar 

  79. Meisinger C, Koenig W, Baumert J, Doring A. Uric acid levels are associated with all-cause and cardiovascular disease mortality independent of systemic inflammation in men from the general population: the MONICA/KORA cohort study. Arterioscler Thromb Vasc Biol. 2008;1:1186–92.

    Article  Google Scholar 

  80. Nakamura T, Tsubono Y, Kameda-Takemura K, et al. Magnitude of sustained multiple risk factors for ischemic heart disease in Japanese employees: a case–control study. Jpn Circ J. 2001;65:11–7.

    Article  PubMed  CAS  Google Scholar 

  81. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Care Res. 2009;61:885–92.

    Article  Google Scholar 

  82. Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–42.

    Article  PubMed  CAS  Google Scholar 

  83. Wallace C, Newhouse SJ, Braund P, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82:139–49.

    Article  PubMed  CAS  Google Scholar 

  84. Wright AF, Rudan I, Hastie ND, Campbell H. A ‘complexity’ of urate transporters. Kidney Int. 2010;78:446–52.

    Article  PubMed  CAS  Google Scholar 

  85. McKeigue PM, Campbell H, Wild S, et al. Bayesian methods for instrumental variable analysis with genetic instruments (Mendelian randomization): example with urate transporter SLC2A9 as an instrumental variable for effect of urate levels on metabolic syndrome. Int J Epidemiol. 2010;39:907–18.

    Article  PubMed  Google Scholar 

  86. Wilson PWF, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112:3066–72.

    Article  PubMed  CAS  Google Scholar 

  87. Kannel WB, McGee DL. Diabetes and cardiovascular disease. JAMA. 1979;241:2035–8.

    Article  PubMed  CAS  Google Scholar 

  88. Reaven P. Metabolic syndrome. J Insur Med. 2004;36:132–42.

    PubMed  Google Scholar 

  89. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    Article  PubMed  CAS  Google Scholar 

  90. Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41:77–81.

    Article  PubMed  CAS  Google Scholar 

  91. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. [Erratum appears in Nat Genet 2010;42(5):464]. Nat Genet. 2010;42:105–16.

    Google Scholar 

  92. Saccone SF, Al H, Saccone NL, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet. 2007;16:36–49.

    Article  PubMed  CAS  Google Scholar 

  93. Amos CI, Wu X, Broderick P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25. Nat Genet. 2008;40:616–22.

    Article  PubMed  CAS  Google Scholar 

  94. Hung RJ, McKay JD, Gaborieau V, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–7.

    Article  PubMed  CAS  Google Scholar 

  95. Lui P, Vikis HG, Wang D, et al. Familial aggregation of common sequence variants on 15q24-25.1 in lung cancer. J Natl Canc Inst. 2008;100:1326–30.

    Article  Google Scholar 

  96. Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–42.

    Article  PubMed  CAS  Google Scholar 

  97. Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5:e1000421.

    Article  PubMed  Google Scholar 

  98. •• Kaur-Knudsen D, Bojesen SE, Tybjærg-Hansen A, Nordestgaard BG. Nicotinic acetylcholine receptor polymorphism, smoking behaviour, and tobacco-related cancer and lung and cardiovascular diseases: a cohort study. J Clin Oncol. 2011;21:2875–82.

    Article  Google Scholar 

  99. Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med. 2008;5:1205–10.

    Article  Google Scholar 

  100. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

    Article  PubMed  Google Scholar 

  101. •• McBride KL, Garg V. Impact of Mendelian inheritance in cardiovascular disease. Ann N Y Acad Sci. 2010;1214:122–37. doi:10.1111/j.1749-6632.2010.05791.x

    Article  PubMed  CAS  Google Scholar 

  102. Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Meth Med Res. 2011 Jan 7 (Epub ahead of print).

  103. Davey Smith G. Use of genetic markers and gene-diet interactions for interrogating population-level causal influences of diet on health. Genes and Nutrition 2011;6:27–43.

    Article  PubMed  Google Scholar 

  104. Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Timpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timpson, N.J., Wade, K.H. & Smith, G.D. Mendelian Randomization: Application to Cardiovascular Disease. Curr Hypertens Rep 14, 29–37 (2012). https://doi.org/10.1007/s11906-011-0242-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0242-7

Keywords

Navigation