Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Mechanical control of cyclic AMP signalling and gene transcription through integrins

Abstract

This study was carried out to discriminate between two alternative hypotheses as to how cells sense mechanical forces and transduce them into changes in gene transcription. Do cells sense mechanical signals through generalized membrane distortion1,2 or through specific transmembrane receptors, such as integrins3? Here we show that mechanical stresses applied to the cell surface alter the cyclic AMP signalling cascade and downstream gene transcription by modulating local release of signals generated by activated integrin receptors in a G-protein-dependent manner, whereas distortion of integrins in the absence of receptor occupancy has no effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stress-and integrin-dependent control of the cAMP signalling cascade.
Figure 2: Mechanistic analysis of integrin-dependent mechanotransduction.

Similar content being viewed by others

References

  1. Gudi, S., Nolan, J. P. & Frangos, J. A. Proc. Natl. Acad. Sci. USA 95, 2515–2519 (1998).

    Article  CAS  Google Scholar 

  2. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. Biophys. J. 65, 177–183 (1993).

    Article  CAS  Google Scholar 

  3. Wang, N., Butler, J. P. & Ingber, D. E. Science 260, 1124–11127 (1993).

    Article  CAS  Google Scholar 

  4. Plopper, G. E., McNamee, H. P., Dike, L. E., Bojanowski, K. & Ingber, D. E. Mol. Biol. Cell 6, 1349–1365 (1995).

    Article  CAS  Google Scholar 

  5. Wang, N. & Ingber, D. E. Biophys. J. 66, 2181–2189 (1994).

    Article  CAS  Google Scholar 

  6. Fong, J. H. & Ingber, D. E. Biochem. Biophys. Res. Commun. 221, 19–24 (1996).

    Article  CAS  Google Scholar 

  7. Gordon, E. A., Fenton, J. W. 2nd & Carney, D. H. Annl. NY Acad. Sci. 485, 249–263 (1986).

    Article  CAS  Google Scholar 

  8. Harootunian, A., Adams, S., Wen, W., Meinkoth, J., Taylor, S. & Tsien, R. Mol. Biol. Cell 4, 993–1002 (1993).

    Article  CAS  Google Scholar 

  9. Gonzalez, G. & Montminy, M. Cell 59, 675–680 (1989).

    Article  CAS  Google Scholar 

  10. Chrivia, J., Kwok, R., Lamb, N., Hagiwara, M., Montminy, M. & Goodman, R. Nature 365, 855–859 (1993).

    Article  CAS  Google Scholar 

  11. Ginty, D. et al. Science 260, 238–241 (1993).

    Article  CAS  Google Scholar 

  12. Miyamoto, S. et al. J. Cell Biol. 131, 791–805 (1995).

    Article  CAS  Google Scholar 

  13. Glogauer, M., Ferrier, J. & McCulloch, C. A. Am. J. Physiol. 269, C1093–C1104 (1995).

    Article  CAS  Google Scholar 

  14. Gudi, S. R., Lee, A. A., Clark, C. B. & Frangos, J. A. Am. J. Physiol. 274, C1424–C1428 (1998).

    Article  CAS  Google Scholar 

  15. Vandenburgh, H. H., Shansky, J., Solerssi, R., Chromiak, J. J. Cell Physiol. 163, 285–294 (1995).

    Article  CAS  Google Scholar 

  16. Frazier, W. A. et al. J. Biol. Chem. 274, 8554–8560 (1999).

    Article  CAS  Google Scholar 

  17. Shyy, J. Y. & Chien, S. Curr. Opin. Cell Biol. 9, 707–713 (1997).

    Article  CAS  Google Scholar 

  18. Gudi, S. R., Clark, C. B. & Frangos, J. A. Circ. Res. 79, 834–839 (1996).

    Article  CAS  Google Scholar 

  19. Davies, P. F., Robotewskyj, A. & Griem, M. L. J. Clin. Invest. 93, 2031–2038 (1994).

    Article  CAS  Google Scholar 

  20. Moore, T. M., Chetham, P. M., Kelly, J. J., & Stevens, T. Am. J. Physiol. 275, L203–L222 (1998).

    CAS  Google Scholar 

  21. Huang, S., Chen, C. S. & Ingber, D. E. Mol. Biol. Cell 9, 3179–3193 (1998).

    Article  CAS  Google Scholar 

  22. Clarke, M. S. & McNeil, P. L. J. Cell Sci. 102, 533–541 (1992).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Greenberg and S. Taylor for essential reagents, N. Wang and J. Fredberg for assistance with magnetic twisting cytometry, and J. Kornhauser, W. Wen, and G. Rodan for helpful suggestions. This work was supported by grants from NIH (CA55833 and HL33009) and NASA (NAG5-4839), NIH Dentist Scientist award to Harvard School of Dental Medicine (DE00275 to C.M.), and a Howard Hughes predoctoral fellowship (F.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Ingber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C., Alenghat, F., Rim, P. et al. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2, 666–668 (2000). https://doi.org/10.1038/35023621

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing