Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Highlight
  • Published:

Influence of extracurricular sport activities on body composition and physical fitness in boys: a 3-year longitudinal study

Abstract

Objective:

To analyse the effect of extracurricular physical activities on fat mass accumulation and physical fitness during growth in early pubertal males.

Design:

Longitudinal study.

Subjects:

A total of 42 male children (9.4±1.4 years, Tanner I–II and 12.7±1.5 years, Tanner III–IV, before and after the 3.3 years follow-up, respectively), randomly sampled from the population of Gran Canaria (Spain), 26 of them physically active (PA, at least 3 h per week during 3 years) and 16 non-physically active (non-PA).

Measurements:

Body composition (dual-energy X-ray absorptiometry), anthropometrics (body circumferences and skinfolds) and physical fitness variables (dynamic and isometric force, anaerobic capacity and maximal aerobic power) were determined in all subjects.

Results:

Both groups had comparable body sizes at the start and the end of the study. Body mass index increased with growth more in the PA than in the non-PA group (P<0.05). However, fat mass accumulation with growth was lower in the PA than in the non-PA (P<0.05). There was a positive relationship between the increment of total and trunkal fat mass, especially in non-active children (r2=0.93). In contrast, there was an inverse relationship between the total lean mass growth and the accumulation of total and regional fat mass (r=−0.37 to −0.41, all P<0.05). Physical fitness was maintained in the PA, while it worsened in the non-PA children.

Conclusions:

Without any dietary intervention, children who regularly participate in at least 3 h per week of sports activities are more protected against total and regional fat mass accumulation. They also increase their total lean and bone mass to a greater extent than children who do not participate in extracurricular sport activities. In addition, PA children maintain their physical fitness during growth, while it deteriorates in the non-PA children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Freedman DS, Srinivasan SR, Valdez RA, Williamson DF, Berenson GS . Secular increases in relative weight and adiposity among children over two decades: the Bogalusa Heart Study. Pediatrics 1997; 99: 420–426.

    Article  CAS  Google Scholar 

  2. Goran MI, Shewchuk R, Gower BA, Nagy TR, Carpenter WH, Johnson RK . Longitudinal changes in fatness in white children: no effect of childhood energy expenditure. Am J Clin Nutr 1998; 67: 309–316.

    Article  CAS  Google Scholar 

  3. Lazarus R, Wake M, Hesketh K, Waters E . Change in body mass index in Australian primary school children, 1985–1997. Int J Obes Relat Metab Disord 2000; 24: 679–684.

    Article  CAS  Google Scholar 

  4. Livingstone B . Epidemiology of childhood obesity in Europe. Eur J Pediatr 2000; 159 (Suppl 1): S14–S34.

    Article  Google Scholar 

  5. Troiano RP, Flegal KM . Overweight prevalence among youth in the United States: why so many different numbers? Int J Obes Relat Metab Disord 1999; 23 (Suppl 2): S22–S27.

    Article  Google Scholar 

  6. Reilly JJ, Dorosty AR . Epidemic of obesity in UK children. Lancet 1999; 354: 1874–1875.

    Article  CAS  Google Scholar 

  7. Huang TT, Johnson MS, Figueroa-Colon R, Dwyer JH, Goran MI . Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children. Obes Res 2001; 9: 283–289.

    Article  CAS  Google Scholar 

  8. Bjorntorp P . Abdominal fat distribution and disease: an overview of epidemiological data. Ann Med 1992; 24: 15–18.

    Article  CAS  Google Scholar 

  9. Bjorntorp P . Abdominal fat distribution and the metabolic syndrome. J Cardiovasc Pharmacol 1992; 20 (Suppl 8): S26–S28.

    Article  Google Scholar 

  10. Lima F, De Falco V, Baima J, Carazzato JG, Pereira RM . Effect of impact load and active load on bone metabolism and body composition of adolescent athletes. Med Sci Sports Exerc 2001; 33: 1318–1323.

    Article  CAS  Google Scholar 

  11. Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez JA, Dorado C, Calbet JA . Enhanced bone mass and physical fitness in prepubescent footballers. Bone 2003; 33: 853–859.

    Article  CAS  Google Scholar 

  12. Calbet JA, Dorado C, Diaz-Herrera P, Rodriguez-Rodriguez LP . High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc 2001; 33: 1682–1687.

    Article  CAS  Google Scholar 

  13. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 1998; 13: 1814–1821.

    Article  CAS  Google Scholar 

  14. Lazzer S, Boirie Y, Bitar A, Montaurier C, Vernet J, Meyer M et al. Assessment of energy expenditure associated with physical activities in free-living obese and nonobese adolescents. Am J Clin Nutr 2003; 78: 471–479.

    Article  CAS  Google Scholar 

  15. Lobstein T, Baur L, Uauy R . Obesity in children and young people: a crisis in public health. Obes Rev 2004; 5 (Suppl 1): 4–104.

    Article  Google Scholar 

  16. Ekelund U, Aman J, Yngve A, Renman C, Westerterp K, Sjostrom M . Physical activity but not energy expenditure is reduced in obese adolescents: a case–control study. Am J Clin Nutr 2002; 76: 935–941.

    Article  CAS  Google Scholar 

  17. Ara I, Vicente-Rodriguez G, Jimenez-Ramirez J, Dorado C, Serrano-Sanchez JA, Calbet JA . Regular participation in sports is associated with enhanced physical fitness and lower fat mass in prepubertal boys. Int J Obes Relat Metab Disord 2004; 28: 1585–1593.

    Article  CAS  Google Scholar 

  18. Berkey CS, Rockett HR, Gillman MW, Colditz GA . One-year changes in activity and in inactivity among 10- to 15-year-old boys and girls: relationship to change in body mass index. Pediatrics 2003; 111: 836–843.

    Article  Google Scholar 

  19. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet JA . High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc 2004; 36: 1789–1795.

    Article  Google Scholar 

  20. Johnson MS, Figueroa-Colon R, Herd SL, Fields DA, Sun M, Hunter GR et al. Aerobic fitness, not energy expenditure, influences subsequent increase in adiposity in black and white children. Pediatrics 2000; 106: E50.

    Article  CAS  Google Scholar 

  21. Gower BA, Nagy TR, Goran MI . Visceral fat, insulin sensitivity, and lipids in prepubertal children. Diabetes 1999; 48: 1515–1521.

    Article  CAS  Google Scholar 

  22. Hunter GR, Kekes-Szabo T, Treuth MS, Williams MJ, Goran M, Pichon C . Intra-abdominal adipose tissue, physical activity and cardiovascular risk in pre- and post-menopausal women. Int J Obes Relat Metab Disord 1996; 20: 860–865.

    CAS  Google Scholar 

  23. Hunter GR, Kekes-Szabo T, Snyder SW, Nicholson C, Nyikos I, Berland L . Fat distribution, physical activity, and cardiovascular risk factors. Med Sci Sports Exerc 1997; 29: 362–369.

    Article  CAS  Google Scholar 

  24. Roemmich JN, Clark PA, Walter K, Patrie J, Weltman A, Rogol AD . Pubertal alterations in growth and body composition. V. Energy expenditure, adiposity, and fat distribution. Am J Physiol Endocrinol Metab 2000; 279: E1426–E1436.

    Article  CAS  Google Scholar 

  25. Ward R, Ross W, Leyland A, Selbie S . The Advanced O-Scale Physique Assessment System. Kinemetrix Inc., Burnaby, 1989.

    Google Scholar 

  26. Calbet JA, Moysi JS, Dorado C, Rodriguez LP . Bone mineral content and density in professional tennis players. Calcif Tissue Int 1998; 62: 491–496.

    Article  CAS  Google Scholar 

  27. Svendsen OL, Haarbo J, Hassager C, Christiansen C . Accuracy of measurements of body composition by dual-energy x-ray absorptiometry in vivo. Am J Clin Nutr 1993; 57: 605–608.

    Article  CAS  Google Scholar 

  28. Gutin B, Litaker M, Islam S, Manos T, Smith C, Treiber F . Body-composition measurement in 9-11-y-old children by dual-energy X- ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis. Am J Clin Nutr 1996; 63: 287–292.

    Article  CAS  Google Scholar 

  29. Snyder WS, Cook MJ, Nasset ES, Karhausen R, Howells GP, Tipton LH . Report of the Task Group on Reference Man. Pergamon: Oxford, UK, 1975.

    Google Scholar 

  30. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH . Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320: 1240–1243.

    Article  CAS  Google Scholar 

  31. Wilson GJ, Murphy AJ . The use of isometric tests of muscular function in athletic assessment. Sports Med 1996; 22: 19–37.

    Article  CAS  Google Scholar 

  32. Bobbert MF, van Zandwijk JP . Dynamics of force and muscle stimulation in human vertical jumping. Med Sci Sports Exerc 1999; 31: 303–310.

    Article  CAS  Google Scholar 

  33. Calbet JA, De Paz JA, Garatachea N, Cabeza de Vaca S, Chavarren J . Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 2003; 94: 668–676.

    Article  CAS  Google Scholar 

  34. Bangsbo J . The physiology of soccer – with special reference to intense intermittent exercise. Acta Physiol Scand Suppl 1994; 619: 1–155.

    CAS  PubMed  Google Scholar 

  35. Weyand PG, Bundle MW . Energetics of high-speed running: integrating classical theory and contemporary observations. Am J Physiol Regul Integr Comp Physiol 2005; 288: R956–R965.

    Article  CAS  Google Scholar 

  36. van Ingen Schenau GJ, de Koning JJ, de Groot G . Optimisation of sprinting performance in running, cycling and speed skating. Sports Med 1994; 17: 259–275.

    Article  CAS  Google Scholar 

  37. Hopkins WG, Schabort EJ, Hawley JA . Reliability of power in physical performance tests. Sports Med 2001; 31: 211–234.

    Article  CAS  Google Scholar 

  38. Coyle EF, Coggan AR, Hopper MK, Walters TJ . Determinants of endurance in well-trained cyclists. J Appl Physiol 1988; 64: 2622–2630.

    Article  CAS  Google Scholar 

  39. Leger LA, Mercier D, Gadoury C, Lambert J . The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci 1988; 6: 93–101.

    Article  CAS  Google Scholar 

  40. Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston Jr CC . Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 1991; 6: 1227–1233.

    Article  CAS  Google Scholar 

  41. Kroger H, Kotaniemi A, Kroger L, Alhava E . Development of bone mass and bone density of the spine and femoral neck – a prospective study of 65 children and adolescents. Bone Miner 1993; 23: 171–182.

    Article  CAS  Google Scholar 

  42. Lu PW, Briody JN, Ogle GD, Morley K, Humphries IR, Allen J et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 1994; 9: 1451–1458.

    Article  CAS  Google Scholar 

  43. Park YW, Heymsfield SB, Gallagher D . Are dual-energy X-ray absorptiometry regional estimates associated with visceral adipose tissue mass? Int J Obes Relat Metab Disord 2002; 26: 978–983.

    Article  Google Scholar 

  44. Blomquist B, Borjeson M, Larsson Y, Persson B, Sterky G . The effect of physical activity on the body measurements and work capacity of overweight boys. Acta Paediatr Scand 1965; 54: 566–572.

    Article  CAS  Google Scholar 

  45. Rourke KM, Brehm BJ, Cassell C, Sethuraman G . Effect of weight change on bone mass in female adolescents. J Am Diet Assoc 2003; 103: 369–372.

    Article  Google Scholar 

  46. Epstein LH, Myers MD, Raynor HA, Saelens BE . Treatment of pediatric obesity. Pediatrics 1998; 101: 554–570.

    CAS  Google Scholar 

  47. Wang MC, Crawford PB, Hudes M, Van Loan M, Siemering K, Bachrach LK . Diet in midpuberty and sedentary activity in prepuberty predict peak bone mass. Am J Clin Nutr 2003; 77: 495–503.

    Article  CAS  Google Scholar 

  48. Owen GM . Body mass index and body fat. Am J Clin Nutr 2003; 78: 348; author reply 348–349.

    Article  CAS  Google Scholar 

  49. Guo SS, Wu W, Chumlea WC, Roche AF . Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr 2002; 76: 653–658.

    Article  CAS  Google Scholar 

  50. Wright CM, Parker L, Lamont D, Craft AW . Implications of childhood obesity for adult health: findings from thousand families cohort study. BMJ 2001; 323: 1280–1284.

    Article  CAS  Google Scholar 

  51. Lopez Calbet J, Armengol O, Chavarren J, Dorado C . Anthropometric equation for assessment of percent body fat in adult males of the Canary Islands. Med Clin (Barcelona) 1997; 108: 207–213.

    CAS  Google Scholar 

  52. Maynard LM, Wisemandle W, Roche AF, Chumlea WC, Guo SS, Siervogel RM . Childhood body composition in relation to body mass index. Pediatrics 2001; 107: 344–350.

    Article  CAS  Google Scholar 

  53. Schmelzle H, Schroder C, Armbrust S, Unverzagt S, Fusch C . Resting energy expenditure in obese children aged 4–15 years: measured versus predicted data. Acta Paediatr 2004; 93: 739–746.

    Article  CAS  Google Scholar 

  54. McMurray RG, Harrell JS, Bangdiwala SI, Hu J . Tracking of physical activity and aerobic power from childhood through adolescence. Med Sci Sports Exerc 2003; 35: 1914–1922.

    Article  Google Scholar 

  55. Kimm SY, Glynn NW, Kriska AM, Fitzgerald SL, Aaron DJ, Similo SL et al. Longitudinal changes in physical activity in a biracial cohort during adolescence. Med Sci Sports Exerc 2000; 32: 1445–1454.

    Article  CAS  Google Scholar 

  56. Sallis JF . Age-related decline in physical activity: a synthesis of human and animal studies. Med Sci Sports Exerc 2000; 32: 1598–1600.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We owe special thanks to Jose Navarro and Jorge Cortadellas Izquierdo for their excellent technical assistance, and to Olena Bykova for revising the English version of the manuscript. This study was supported by grants from the Ministerio de Ciencia y Tecnología (BFI2003-09638 and FEDER), Universidad de Las Palmas de Gran Canaria (PhD grant to Ignacio Ara), Gobierno de Canarias (PI2000/067) and Consejo Superior de Deportes (27/UNI10/00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A L Calbet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ara, I., Vicente-Rodriguez, G., Perez-Gomez, J. et al. Influence of extracurricular sport activities on body composition and physical fitness in boys: a 3-year longitudinal study. Int J Obes 30, 1062–1071 (2006). https://doi.org/10.1038/sj.ijo.0803303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803303

Keywords

This article is cited by

Search

Quick links