Int J Sports Med 2006; 27(12): 984-992
DOI: 10.1055/s-2006-923833
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Frequency of the V·O2max Plateau Phenomenon in World-Class Cyclists

A. Lucía1 , M. Rabadán2 , J. Hoyos3 , M. Hernández-Capilla2 , M. Pérez1 , A. F. San Juan1 , C. P. Earnest4 , J. L. Chicharro5
  • 1Exercise Physiology Laboratory, European University of Madrid, Madrid, Spain
  • 2Sports Medicine Center, Higher Sports Council, Madrid, Spain
  • 3Banesto Sports Association, Madrid, Spain
  • 4The Cooper Institute Center's for Integrated Health Research, Dallas, TX, USA
  • 5Department of Nursery, Complutense University, Madrid, Spain
Further Information

Publication History

Accepted after revision: November 28, 2005

Publication Date:
30 May 2006 (online)

Abstract

We aimed to determine the frequency of the V·O2max plateau phenomenon in top-level male professional road cyclists (n = 38; V·O2max [mean ± SD]: 73.5 ± 5.5 ml · kg-1 · min-1) and in healthy, sedentary male controls (n = 37; V·O2max: 42.7 ± 5.6 ml · kg-1 · min-1). All subjects performed a continuous incremental cycle-ergometer test of 1-min workloads until exhaustion. Power output was increased from a starting value of 25 W (cyclists) or 20 W (controls) at the rate of 25 W · min-1 (cyclists) or 20 W · min-1 (controls) until volitional exhaustion. We measured gas-exchange and heart rate (HR) throughout the test. Blood concentrations of lactate (BLa) were measured at end-exercise in both groups. We defined maximal exercise exertion as the attainment of a respiratory exchange rate (RER) ≥ 1.1; HR > 95 % age-predicted maximum; and BLa > 8 mmo · l-1. The V·O2max plateau phenomenon was defined as an increase in two or more consecutive 1-min mean V·O2 values of less than 1.5 ml · kg-1 · min-1. Most cyclists met our criteria for maximal exercise effort (RER > 1.1, 100 %; 95 % predicted maximal HR [HRmax], 82 %; BLa > 8 mmol · l-1, 84 %). However, the proportion of cyclists attaining a V·O2max plateau was considerably lower, i.e., 47 %. The majority of controls met the criteria for maximal exercise effort (RER > 1.1, 100 %; predicted HRmax, 68 %; BLa > 8 mmol · l-1, 73 %), but the proportion of these subjects with a V·O2max plateau was only 24 % (significantly lower proportion than in cyclists [p < 0.05]). Scientists should consider 1) if typical criteria of attainment of maximal effort are sufficiently stringent, especially in elite endurance athletes; and 2) whether those humans exhibiting the V·O2max plateau phenomenon are those who perform an absolute maximum effort or there are additional distinctive features associated with this phenomenon.

References

  • 1 Ansley L, Rauch L, St Clair Gibson A. et al . The effect of cadence on power output, oxygen consumption and the incidence of the plateau phenomenon during maximal incremental exercise.  J Sports Sci.
  • 2 Astrand I. Aerobic work capacity in men and women with special reference to age.  Acta Physiol Scand. 1960;  49 1-92
  • 3 Bassett D R, Howley E T. Limiting factors for maximum oxygen uptake and determinants of endurance performance.  Med Sci Sports Exerc. 2000;  32 70-84
  • 4 Chicharro J L, Hoyos J, Lucia A. Effects of endurance training on the isocapnic buffering and hypocapnic hyperventilation phases in professional cyclists.  Br J Sports Med. 2000;  34 450-455
  • 5 Cumming G R, Friesen W. Bicycle ergometer measurement of maximal oxygen uptake in children.  Can J Physiol Pharmacol. 1967;  45 937-946
  • 6 Day J R, Rossiter H B, Coats E M, Skasick A, Whipp B J. The maximally-attainable V·O2 during exercise in humans: the peak vs. maximum issue.  J Appl Physiol. 2003;  95 1901-1907
  • 7 Dempsey J A, Wagner P D. Exercise-induced hypoxemia.  J Appl Physiol. 1999;  87 1997-2006
  • 8 Doherty M, Nobbs L, Noakes T D. Low frequency of the “plateau phenomenon” during maximal exercise in elite British athletes.  Eur J Appl Physiol. 2003;  89 619-623
  • 9 Foster V L, Hume G JE, Dickinson A L, Chatfield S J, Byrnes W C. The reproducibility of V·O2max, ventilatory, and lactate thresholds in elderly women.  Med Sci Sports Exerc. 1986;  18 425-430
  • 10 Foxdal P, Sjodin B, Rudstam H, Ostman C, Ostman B, Hedenstierna G C. Lactate concentration differences in plasma, whole blood, capillary finger blood and erythrocytes during submaximal graded exercise in humans.  Eur J Appl Physiol. 1990;  61 218-222
  • 11 Glassford R G, Baycroft G HY, Sedgwick A W, Macnab R BJ. Comparison of maximal oxygen uptake values determined by predicted and actual methods.  J Appl Physiol. 1965;  20 509-513
  • 12 Harms C, McClaran S, Nickele G A, Pegelow D F, Nelson W B, Dempsey J A. Effect of exercise-induced arterial O2 desaturation on V·O2 max in women.  Med Sci Sports Exerc. 2000;  32 1101-1108
  • 13 Harms C, McClaran S, Nickele G A, Pegelow D F, Nelson W B, Dempsey J A. Exercise-induced arterial hypoxaemia in healthy young women.  J Physiol. 1998;  507 619-628
  • 14 Hill A V, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen.  Quart J Med. 1923;  16 135-171
  • 15 Howley E T, Bassett J R, Welch H G. Criteria for maximal oxygen uptake: review and commentary.  Med Sci Sports Exerc. 1995;  27 1292-1301
  • 16 Kuipers H, Verstappen F T, Keizer H A, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates.  Int J Sports Med. 1985;  6 197-201
  • 17 Lamarra N, Whipp B J, Ward S A, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics.  J Appl Physiol. 1987;  62 2003-2012
  • 18 Lucia A, Earnest C, Arribas C. The Tour de France: a physiological review.  Scand J Med Sci Sport. 2003;  13 275-283
  • 19 Lucia A, Hoyos J, Chicharro J L. Preferred pedalling cadence in professional road cycling.  Med Sci Sports Exerc. 2001;  33 1361-1366
  • 20 Lucia A, Hoyos J, Earnest C, Chicharro J L. Tour de France versus Vuelta a España: which is harder?.  Med Sci Sports Exerc. 2003;  35 872-878
  • 21 Lucia A, Hoyos J, Perez M, Santalla A, Chicharro J L. Inverse relationship between V·O2max and economy/efficiency in world-class cyclists.  Med Sci Sports Exerc. 2002;  34 2079-2084
  • 22 Lucia A, Pardo J, Hoyos J, Chicharro J L. Effects of endurance training in the breathing pattern of professional cyclists.  Jpn J Physiol. 2001;  51 133-141
  • 23 Mitchell J H, Sproule B J, Champman C B. The physiological meaning of the maximal oxygen intake test.  J Clin Invest. 1958;  37 538-547
  • 24 Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood J E. Exercise capacity and mortality among men referred for exercise testing.  N Engl J Med. 2002;  4 793-780
  • 25 Myers J, Walsh D, Buchanan N, Froelicher V F. Can maximal cardiopulmonary capacity be recognized by a plateau in oxygen uptake?.  Chest. 1989;  96 1312-1316
  • 26 Myers J, Walsh D, Sullivan M, Froelicher V. Effect of sampling on variability and plateau in oxygen uptake.  J Appl Physiol. 1990;  68 404-410
  • 27 Niemela K, Palatsi I, Linnaluoto M, Takkunen J. Criteria for maximum oxygen uptake in progressive bicycle tests.  Eur J Appl Physiol. 1980;  44 51-59
  • 28 Niemela K, Palatsi I, Takkunen J. The oxygen uptake - work output relationship of runners during graded cycling exercise: sprinters vs. endurance runners.  Br J Sports Med. 1980;  14 204-209
  • 29 Noakes T D, St Clair Gibson A. Logical limitations to the “catastrophe” models of fatigue during exercise in humans.  Br J Sports Med. 2004;  38 648-649
  • 30 Rietjens G J, Kuipers H, Kester A D, Keizer H A. Validation of a computerized metabolic measurement system (Oxycon-Pro) during low and high intensity exercise.  Int J Sports Med. 2001;  22 291-294
  • 31 Rocker K, Striegel H, Freund T, Dickhuth H H. Relative functional buffering capacity in 400-meter runners, long-distance runners and untrained individuals.  Eur J Appl Physiol. 1994;  68 430-434
  • 32 Severinghaus J W. Simple, accurate equations for human blood O2 dissociation computations.  J Appl Physiol. 1979;  46 599-602
  • 33 Sloniger M A, Cureton K J, Carrasco D I, Prior B M, Rowe D A, Thompson R W. Effect of the slow-component rise in oxygen uptake on the V·O2max.  Med Sci Sports Exerc. 1996;  28 72-78
  • 34 Smith M F, Balmer J, Coleman D A, Bird S R, Davison R C. Method of lactate elevation does not affect the determination of the lactate minimum.  Med Sci Sports Exerc. 2002;  34 1744-1749
  • 35 Taylor H L, Buskirk E, Henschel A. Maximal oxygen uptake as an objective measure of cardiorespiratory performance.  J Appl Physiol. 1955;  8 73-80
  • 36 Wagner P D. New ideas on limitations to V·O2max.  Exerc Sports Sci Rev. 2000;  28 10-14
  • 37 Wyndham C H, Strydom N B, Maritz J S. Maximum oxygen intake and maximum heart rate during strenuous work.  J Appl Physiol. 1959;  14 927-936

MD PhD Alejandro Lucía

Exercise Physiology Laboratory
European University of Madrid

Villaviciosa de Odón

28670 Madrid

Spain

Fax: + 349 16 16 82 65

Email: alejandro.lucia@uem.es

    >