Skip to main content
Log in

Use of Blood Lactate Measurements for Prediction of Exercise Performance and for Control of Training

Recommendations for Long-Distance Running

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Time over a distance, i.e. speed, is the reference for performance for all events whose rules are based on locomotion in different mechanical constraints. A certain power output has to be maintained during a distance or over time. The energy requirements and metabolic support for optimal performance are functions of the length of the race and the intensity at which it is completed. However, despite the complexity of the regulation of lactate metabolism, blood lactate measurements can be used by coaches for prediction of exercise performance.

The anaerobic threshold, commonly defined as the exercise intensity, speed or fraction of maximal oxygen uptake (V̇O2max) at a fixed blood lactate level or at a maximal lactate steady-state (MLSS), has been accepted as a measure of the endurance. The blood lactate threshold, expressed as a fraction of the velocity associated with V̇O2max, depends on the relationship between velocity and oxygen uptake (V̇O2). The measurement of the post-competition blood lactate in short events (lasting 1 to 2 minutes) has been found to be related to the performance in events (400 to 800m in running). Blood lactate levels can be used to assist with determining training exercise intensity. However, to interpret the training effect on the blood lactate profile, the athlete’s nutritional state and exercise protocol have also to be controlled. Moreover, improvement of fractional utilisation of V̇O2max at the MLSS has to be considered among all discriminating factors of the performance, such as the velocity associated with V̇O2max.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacobs I. Blood lactate implications for training and sports performance. Sports Med 1986; 3: (10–25)

    Article  PubMed  CAS  Google Scholar 

  2. Walsh ML, Bannister EW. Possible mechanisms of the anaerobic threshold. Sports Med 1988; 5: (269–302)

    Article  PubMed  CAS  Google Scholar 

  3. Foster C, Crowe MP, Holum D, et al. The bloodless lactate profile. Med Sci Sports Exerc 1995; 27: (927–33)

    PubMed  CAS  Google Scholar 

  4. Bishop P, Martino M. Blood lactate measurement in recovery as an adjunct to training. Sports Med 1993; 16: (5–13)

    Article  PubMed  CAS  Google Scholar 

  5. di Prampero PE. Physiological aspects of rowing. J Appl Physiol 1971; 31: (853–7)

    PubMed  Google Scholar 

  6. di Prampero PE. Energetics of swimming in man. J Appl Physiol 1974; 37: (1–5)

    PubMed  Google Scholar 

  7. Snyder AC, O’Hagan KP, Clifford PS, et al. Exercise responses to inline skating: comparisons to running and cycling. Int J Sports Med 1993; 14: (38–42)

    Article  PubMed  CAS  Google Scholar 

  8. Margaria R, Cerretelli P, Mangili F. Balance and kinetics of anaerobic energy release during strenuous exercise in man. J Appl Physiol 1963; 19: (623–8)

    Google Scholar 

  9. Jones N, Ersham RE. The anaerobic threshold. Exerc Sports Sci Rev 1982; 10: (49–83)

    Article  CAS  Google Scholar 

  10. Mader A. Evaluation of the endurance performance of marathon runners and theoretical analysis of test results. J Sports Med Phys Fitness 1991; 33: (1–19)

    Google Scholar 

  11. Brooks GA. Anaerobic threshold: review of the concept and direction for future research. Med Sci Sports Exerc 1985; 17: (31–5)

    Google Scholar 

  12. Billat V, Pinoteau J, Petit B, et al. Hypoxémie et temps limite a la vitesse aérobie maximale chez des coureurs de fond. Can J Appl Physiol 1995; 20: (102–11)

    Article  PubMed  CAS  Google Scholar 

  13. Farrel PE, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports Exerc 1979; 11: (338–44)

    Google Scholar 

  14. Londeree BR, Ames A. Maximal steady state versus state of conditioning. Eur J Appl Physiol 1975; 34: (269–78)

    Article  CAS  Google Scholar 

  15. Lafontaine TP, Londeree BR, Spath WK. The maximal steady-state versus selected running events. Med Sci Sports Exerc 1981; 13: (190–2)

    PubMed  CAS  Google Scholar 

  16. Hagberg JA, Coyle EF. Physiological determinants of endurance performance as studied in competitive racewalkers. Med Sci Sports Exerc 1983; 15: (287–9)

    Article  PubMed  CAS  Google Scholar 

  17. Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 1979; 42: (25–34)

    Article  CAS  Google Scholar 

  18. Heck H, Mader A, Hess G, et al. Justification of the 4 mmol/1 lactate threshold. Int J Sports Med 1985; 6: (117–30)

    Article  PubMed  CAS  Google Scholar 

  19. Sjodin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 1981; 2: (23–6)

    Article  PubMed  CAS  Google Scholar 

  20. Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4mmol/1. Int J Sports Med 1982; 3: (105–10)

    Article  PubMed  CAS  Google Scholar 

  21. Aunola S, Rusko H. Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. Eur J Appl Physiol 1984; 53: (260–6)

    Article  CAS  Google Scholar 

  22. Billat V, Dalmay F, Antonini MT, et al. A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise. Eur J Appl Physiol 1994; 69: (196–202)

    Article  CAS  Google Scholar 

  23. Stainsby WN. Biochemical and physiological bases for the lactate production. Med Sci Sports Exerc 1986; 18: (341–2)

    Article  PubMed  CAS  Google Scholar 

  24. Skinner RJ, McLellan TH. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 1980; 51: (234–48)

    PubMed  CAS  Google Scholar 

  25. Brooks GA, Fahey TD, White TP. Exercise physiology: human bioenergetics and its application. 2nd ed. Mountain View (CA): Mayfield Publishing, 1996: 191–5

    Google Scholar 

  26. Daniels J. Physiological characteristics of champion male athletes. Res Q 1974; 45: (342–8)

    PubMed  CAS  Google Scholar 

  27. Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12: (357–60)

    PubMed  CAS  Google Scholar 

  28. Costill DL. Metabolic responses during distance running. J Appl Physiol 1970; 28: (251–5)

    PubMed  CAS  Google Scholar 

  29. Coyle EF, Coggan AR, Hopper MK, et al. Determinants of endurance in well-trained cyclists. J Appl Physiol 1988; 64: (2622–30)

    PubMed  CAS  Google Scholar 

  30. di Prampero PE. The energy cost of human locomotion on land and in water. Int J Sports Med 1986; 7: (55–72)

    Article  PubMed  Google Scholar 

  31. Daniels JT, Scardina N, Hayes J, et al. Elite and subelite female middle- and long-distance runners. In: Landers DM, editor. Sport and elite performers. Champaign (IL): Human Kinetics, 1986: 57–72

    Google Scholar 

  32. Lacour JR, Padilla-Magunacelaya S, Chatard JC, et al. Assessment of running velocity at maximal oxygen uptake. Eur J Appl Physiol 1991; 62: (77–82)

    Article  CAS  Google Scholar 

  33. Yoshida T, Udo M, Iwai K, et al. Physiological characteristics related to endurance running performance in female distance runners. J Sports Sci 1993; 11: (57–62)

    Article  PubMed  CAS  Google Scholar 

  34. Padilla S, Bourdin M, Barthelemy JC, et al. Physiological correlates of middle-distance running performance. Eur J Appl Physiol 1992; 65: (561–6)

    Article  CAS  Google Scholar 

  35. Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc 1988; 20: (319–30)

    Article  PubMed  CAS  Google Scholar 

  36. Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the V̇O2max test predicts running performance. J Sports Sci 1990; 8: (35–45)

    Article  PubMed  CAS  Google Scholar 

  37. Kenney WL, Hodgson JL. Variables predictive of performance in elite middle-distance runners. Br J Sports Med 1986; 19: (207–9)

    Article  Google Scholar 

  38. Iwaoka K, Hatta H, Atomi Y, et al. Lactate, respiratory compensation thresholds, and distance running performance in runners of both sexes. Int J Sports Med 1988; 9: (306–9)

    Article  PubMed  CAS  Google Scholar 

  39. Joyner MJ. Modelling: optimal marathon performance on the basis of physiological factors. J Appl Physiol 1991; 70: (683–7)

    PubMed  CAS  Google Scholar 

  40. Allen WK, Seals DR, Hurley BF, et al. Lactate threshold and distance-running performance in young and older endurance athletes. J Appl Physiol 1985; 58: (1281–4)

    PubMed  CAS  Google Scholar 

  41. Weltman J, Seip R, Levine S, et al. Prediction of lactate threshold and blood lactate concentrations from 3200-m time trial running performance in untrained females. Int J Sports Med 1989; 10:207–11

    Article  PubMed  CAS  Google Scholar 

  42. Sehnal E, Haber P, Pessenholet H, et al. The anaerobic threshold at 4 mM serum lactate and an individual one compared by correlation to the speed of a 1000m swimming heat. In: Bachl N, Prokop L, Rivachert R, editors. Current topics in Sports Medicine. Vienna: Urban & Schwazenberg, 1984: 266–71

    Google Scholar 

  43. Helgerud J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol 1994; 68: (155–61)

    Article  CAS  Google Scholar 

  44. Hagan RD, Smith MG, Gettman LR. Marathon performance in relation to maximal aerobic power and training indices. Med Sci Sports Exerc 1981; 13: (185–9)

    PubMed  CAS  Google Scholar 

  45. Sjodin B, Svedenhag J. Applied physiology of marathon running. Sports Med 1985; 2: (83–9)

    Article  PubMed  CAS  Google Scholar 

  46. Steinacker JM. Physiological Aspects of training in rowing. Int J Sports Med 1993; Suppl. 1: S3–10

    Google Scholar 

  47. Tanaka K, Matsuura Y, Matsuura A, et al. A longitudinal assessment of anaerobic threshold and distance-running performance. Med Sci Sports Exerc 1984; 16: (276–82)

    Google Scholar 

  48. Gaesser G, Poole DA. Lactate and ventilatory thresholds: disparity in time course of adaptations to training. J Appl Physiol 1986; 61: (999–1004)

    PubMed  CAS  Google Scholar 

  49. Hamel P, Simoneau JA, Lortie G, et al. Heredity and muscle adaptation to endurance training. Med Sci Sports Exerc 1986; 18: (690–6)

    PubMed  CAS  Google Scholar 

  50. Bouchard C, Lesage R, Lortie G, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc 1986; 18: (107–13)

    Google Scholar 

  51. Henriksson J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol (Lond) 1977; 270: (661–75)

    CAS  Google Scholar 

  52. Gollnick PD, Hermansen L. Biochemical adaptation to exercise: anaerobic metabolism. In: Wilmore JH, editor. Exercise and sport science reviews. Vol. 1. New York: Academic Press, 1973: 1–43

    Google Scholar 

  53. Ivy JL, Withers RT, Van Handel PJ, et al. Muscle respiratory capacity and fiber type as determinants of the lactate threshold. J Appl Physiol 1980; 48: (523–7)

    PubMed  CAS  Google Scholar 

  54. Hermansen L. Muscular fatigue during maximal exercise of short duration. In: di Prampero PE, Poortmans M, editors. Physiological chemistry of exercise and training. Basel: Karger, 1981:42–52

    Google Scholar 

  55. di Prampero PE. Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 1981; 89: (144–222)

    Google Scholar 

  56. Fujitsuka N, Yamamoto T, Ohkuwa T, et al. Peak blood lactate after short periods of maximal treadmill running. Eur J Appl Physiol 1982; 48: (289–96)

    Article  CAS  Google Scholar 

  57. Camus G, Fossion A, Juchmes J, et al. Equivalent énergétique de la production du lactate plasmatique dans la course d’intensité supramaximale. Arch Int Physiol Biochim 1984: 361–8

  58. Camus G, Thys H. An evaluation of the maximal anaerobic capacity in man. Int J Sports Med 1991; 12: (349–55)

    Article  PubMed  CAS  Google Scholar 

  59. Medbo JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by accumulated O2 deficit. J Appl Physiol 1988; 64: (50–60)

    PubMed  CAS  Google Scholar 

  60. Hautier CD, Wouassi D, Arsac LM, et al. Relationships between postcompetition blood lactate concentration and average running velocity over 100-m and 200-m races. Eur J Appl Physiol 1994; 68: (508–13)

    Article  CAS  Google Scholar 

  61. Ryan R, Coyle EF, Quick RW. Blood lactate profile throughout a training season in elite female swimmers. J Swim Res 1990; 6: (5–9)

    Google Scholar 

  62. Foster C, Snyder AC, Thompson NN, et al. Normalization of blood lactate profile in athletes. Int J Sports Med 1988; 9: (198–200)

    Article  PubMed  CAS  Google Scholar 

  63. Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold. Int J Sports Med 1981; 2: (160–5)

    Article  PubMed  CAS  Google Scholar 

  64. McLellan TM, Cheung KSY, Jacobs I. Incremental test protocol, recovery mode and the individual anaerobic threshold. Int J Sports Med 1991; 12: (190–5)

    Article  PubMed  CAS  Google Scholar 

  65. Keul J. The relationship between circulation and metabolism during exercise. Med Sci Sports Exerc 1973; 5: (209–19)

    CAS  Google Scholar 

  66. Conconi F, Ferrari M, Ziglio PG, et al. Determination of the anaerobic threshold by a non invasive field test in runners. J Appl Physiol 1982; 52: (869–73)

    PubMed  CAS  Google Scholar 

  67. Cellini M, Vitiello P, Nagliati A, et al. Non invasive determination of the anaerobic threshold in swimming. Int J Sports Med 1986; 7: (347–51)

    Article  PubMed  CAS  Google Scholar 

  68. Droghetti P, Borsetto C, Casoni L, et al. Non invasive determination of the anaerobic threshold in canoeing, cross-country skiing, cycling, roller and ice skating, rowing, and walking. Eur J Appl Physiol 1985; 53: (299–303)

    Article  CAS  Google Scholar 

  69. Francis KT, McClatchey PR, Sumsion JR, et al. The relationship between anaerobic threshold and heart rate linearity during cycle ergometry. Eur J Appl Physiol 1989; 59: (273–7)

    Article  CAS  Google Scholar 

  70. Kuipers H, Keizer HA, de Vries T, et al. Comparison of heart rate as a non-invasive determinant of anaerobic threshold with the lactate threshold when cycling. Eur J Appl Physiol 1988; 58: (303–6)

    Article  CAS  Google Scholar 

  71. Tokmakaidis SP, Leger LA. Comparison of mathematically determined blood lactate and heart rate ‘threshold’ points and relationship with performance. Eur J Appl Physiol 1992; 64: (309–17)

    Article  Google Scholar 

  72. Snyder AC, Woulfe T, Welsh R, et al. A simplified approach to estimating the maximal lactate steady state. Int J Sports Med 1994; 15: (27–31)

    Article  PubMed  CAS  Google Scholar 

  73. Borg G, Hassmen P, Lagerstrom M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol 1987; 56, 679–85

    Article  CAS  Google Scholar 

  74. Skinner JS, Hutsler R, Bergsteinova V, et al. Perceptions of effort during different types of exercise and under different environmental conditions. Med Sci Sports Exerc 1973; 5: (110–5)

    CAS  Google Scholar 

  75. Noble BJ, Borg GAV, Jacobs I, et al. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med Sci Sports Exerc 1983; 15: (523–8)

    PubMed  CAS  Google Scholar 

  76. Seip RL, Snead D, Pierce EF, et al. Perceptual responses and blood lactate concentration: effect of training state. Med Sci Sports Exerc 1991; 23 (1): (80–7)

    PubMed  CAS  Google Scholar 

  77. Steed JC, Gaesser GA, Weltman A. Rating of perceived exertion (RPE) as markers of blood lactate concentration during rowing. Med Sci Sports Exerc 1994; 26: (797–803)

    Article  PubMed  CAS  Google Scholar 

  78. Olbrecht J, Madsen O, Liesen H, et al. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercise. Int J Sports Med 1985; 6: (74–7)

    Article  PubMed  CAS  Google Scholar 

  79. Yoshida T. Effect of exercise duration during incremental exercise on the determination of anaerobic threshold and the onset of blood lactate accumulation. Eur J Appl Physiol 1984; 53: (196–9)

    Article  CAS  Google Scholar 

  80. Mognoni P, Sirtori MD, Lorenzi F, et al. Physiological responses during prolonged exercise at the power output corresponding to the blood lactate threshold. Eur J Appl Physiol 1990; 60: (239–43)

    Article  CAS  Google Scholar 

  81. Oyono-Enguelle S, Heitz A, Marbach J, et al. Blood lactate during constant-load exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol 1990; 60: (321–30)

    Article  CAS  Google Scholar 

  82. Nagle F, Robinhold D, Howley E, et al. Lactic acid accumulation during running at submaximal aerobic demands. Med Sci Sports Exerc 1970; 2: (182–6)

    CAS  Google Scholar 

  83. Urhausen A. Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med 1993; 14: (134–9)

    Article  PubMed  CAS  Google Scholar 

  84. Lechevalier JM, Vandewalle H, Chatard JC, et al. Relationship between the 4 mMol running velocity, the time-distance relationship and the Leger-Boucher test. Arch Int Physiol Biochim 1989; 97: (355–60)

    Article  PubMed  CAS  Google Scholar 

  85. Monod H, Scherrer J. The work capacity of synergy muscular groups. Ergonomics 1965; 8: (329–38)

    Article  Google Scholar 

  86. Hill DW. The critical power concept. Sports Med 1993; 16: (237–54)

    Article  PubMed  CAS  Google Scholar 

  87. Beneke R, von Duvillard SP. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc 1996; 28: (241–6)

    Article  PubMed  CAS  Google Scholar 

  88. Fay L, Londeree BR, Lafontaine TP, et al. Physiological parameters related to distance running performance in female athletes. Med Sci Sports Exerc 1989; 21: (319–24)

    PubMed  CAS  Google Scholar 

  89. Costill DL. The relation between selected physiological variables and distance running performance. J Sports Med Phys Fitness 1976; 7: (61–6)

    Google Scholar 

  90. Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol 1989; 67: (453–65)

    PubMed  Google Scholar 

  91. Costill DL, Fink WJ, Flynn M, et al. Muscle fiber composition and enzymes activities in elite female distance runners. Int J Sports Med 1987; 8: (103–6)

    Article  PubMed  Google Scholar 

  92. Daniels JT, Krahenbuhl G, Foster C, et al. Aerobic responses of female distance runners to submaximal and maximal exercise. Ann NY Acad Sci 1977; 301: (126–33)

    Article  Google Scholar 

  93. Billat V, Beillot J, Rochcongar P, et al. Gender effect on the relationship among time limit at 100% of V̇O2max With other bioenergetic characteristics. Med Sci Sports Exerc 1996; 28: (1049–55)

    Article  PubMed  CAS  Google Scholar 

  94. Medbo JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 1990; 67: (1881–6)

    Google Scholar 

  95. Hill DW, Smith JC. A comparison of methods of estimating anaerobic work capacity. Ergonomics 1993; 36: (1495–500)

    Article  PubMed  CAS  Google Scholar 

  96. Yoshida T, Udo M, Iwai K, et al. The reproducibility of the 4 mmol/1 lactate threshold in trained and untrained women. Int J Sports Med 1991; 12: (363–8)

    Article  Google Scholar 

  97. Tanaka H, Shindo M. Running velocity at blood lactate threshold of boys aged 6–15 yrs compared with untrained and trained young males. Int J Sports Med 1985; 6: (90–4)

    Article  PubMed  CAS  Google Scholar 

  98. Macek M, Vävra J. The adjustment of O2 uptake at the onset of exercise: a comparison between prepubertal boys and young adults. Int J Sports Med 1980; 1: (70–2)

    Article  Google Scholar 

  99. Bell RD, MacDougall JO, Billeter R, et al. Muscle fiber types and morphometric analysis of skeletal muscle in six year old children. Med Sci Sport 1980; 12: (28–31)

    CAS  Google Scholar 

  100. Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand 1973; 87: (485–97)

    Article  PubMed  CAS  Google Scholar 

  101. Knuttgen HE, Saltin B. Muscles metabolites and oxygen uptake in short term submaximal exercise in men. J Appl Physiol 1972; 5: (690–4)

    Google Scholar 

  102. Cerretelli P, Rennie DW, Pendergast DP. Kinetics of metabolic transients during exercise. In: Cerretelli P, Whipp BJ, editors. Exercise bioenergetics and gas exchange. Holland: Elsevier, 1980: 187–209

    Google Scholar 

  103. Armstrong N, Welsman JR. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc Sport Sci Rev 1994; 22, 435–76

    Article  PubMed  CAS  Google Scholar 

  104. Welsman JR, Armstrong N, Kirby BJ. Serum testosterone is not related to peak V̇O2 and submaximal blood lactate responses in 12- to 16-year-old males. Ped Exerc Sci 1994; 6, 120–7

    Google Scholar 

  105. Billat V, Gratas-Delamarche A, Monnier M, et al. A test to approach maximal lactate steady-state in 12-year old boys and girls. Arch Physiol Biochem 1995; 103: (65–72)

    Article  PubMed  CAS  Google Scholar 

  106. Mocellin R, Heusgen M, Korsten-Reck U. Anaerobic threshold and maximal steady-state blood lactate in prepubertal boys. Eur J Appl Physiol 1991; 62: (56–60)

    Article  CAS  Google Scholar 

  107. Macek M, Vävra J, Novosadova J. Prolonged exercise in prepubertal boys. I. Cardiovascular and metabolic adjustment. Eur J Appl Physiol 1976; 35: (291–8)

    Article  CAS  Google Scholar 

  108. Daniels J, Oldridge N. Changes in oxygen consumption of young boys during growth and running training. Med Sci Sports Exerc 1971; 3: (161–5)

    CAS  Google Scholar 

  109. Davies CTM. Metabolic cost of exercise and physical performance in children with some observations on external loading. Eur J Appl Physiol 1991; 45: (95–102)

    Article  Google Scholar 

  110. Unnithan VB, Timmons JA, Paton JY, et al. Physiologic correlates to running performance in pre-pubertal distance runners. Int J Sports Med 1995; 16: (528–33)

    Article  PubMed  CAS  Google Scholar 

  111. Maffuli N, Testa V, Capano G. Anaerobic threshold determination in master endurance runners. J Sports Med Phys Fitness 1994; 34: (242–9)

    Google Scholar 

  112. Coggan AR, Kohrt WM, Spina RJ, et al. Endurance training decreases plasma glucose turnover and oxidation during moderate intensity exercise in men. J Appl Physiol 1990; 68: (990–6)

    PubMed  CAS  Google Scholar 

  113. Föhrenbach B, Mader A, Hollmann W. Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int J Sports Med 1987; 8: (11–8)

    Article  PubMed  Google Scholar 

  114. Daniels JT, Yarbough RA, Foster C. Changes in V̇O2max and running performance with training. Eur J Appl Physiol 1978; 39: (249–54)

    Article  CAS  Google Scholar 

  115. Wenger HA, Bell GJ. The interaction of intensity, frequency, and duration of exercise training in altering cardiorespiratory fitness. Sports Med Phys Fitness 1986; 3: (346–56)

    CAS  Google Scholar 

  116. Priest JW, Hagan RD. The effect of maximum steady state pace training on running performance. Br J Sports Med 1987; 21: (18–21)

    Article  PubMed  CAS  Google Scholar 

  117. Coen B, Schwarz L, Urhausen A, et al. Control of training in middle- and long-distance running by means of the individual anaerobic threshold. Int J Sports Med 1991; 12: (519–24)

    Article  PubMed  CAS  Google Scholar 

  118. Robinson DM, Robinson SM, Hume PA, et al. Training intensity of elite male distance runners. Med Sci Sports Exerc 1991; 23: (1078–82)

    PubMed  CAS  Google Scholar 

  119. Casaburi R, Storer TW, Sullivan CS, et al. Evaluation of blood lactate elevation as an intensity criterion for exercise training. Med Sci Sports Exerc 1995; 27: (852–62)

    PubMed  CAS  Google Scholar 

  120. Deason J, Powers SK, Lawler J, et al. Physiological correlates to 800 meter running performance. J Sports Med Phys Fitness 1991; 31: (499–504)

    PubMed  CAS  Google Scholar 

  121. Hirvonen J, Nummela A, Rusko H, et al. Fatigue and changes of ATP, creatine phosphate, and lactate during the 400-m sprint. Can J Sport Sci 1992; 17: (141–4)

    PubMed  CAS  Google Scholar 

  122. Kindermann W, Keul J. Lactate acidosis with different forms of sport activities. Can J Sport Sci 1977; 2: (177–82)

    CAS  Google Scholar 

  123. Lacour JR, Bouvat E, Barthélémy JC. Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races. Eur J Appl Physiol 1990; 61: (172–6)

    Article  CAS  Google Scholar 

  124. Karlsson J, Saltin B. Lactate, ATP, and CP in working muscles during exhaustive exercise in man. J Appl Physiol 1970; 29: (598–602)

    Google Scholar 

  125. Keskinen KL, Komi PV, Rusko H. A comparative study of blood lactate tests in swimming. Int J Sports Med 1989; 10: (197–201)

    Article  PubMed  CAS  Google Scholar 

  126. Treffene RJ, Dikson R, Craven C, et al. Lactic acid accumulation during constant speed swimming at controlled relative intensities. J Sports Med 1980; 20: (244–54)

    CAS  Google Scholar 

  127. Costill DL, Kirwan J, Fildming R. Predicting success in middle-distance events. Int J Sports Med 1985; 6: (266–70)

    Article  PubMed  CAS  Google Scholar 

  128. Lavoie JM, Léger LA, Montpetit RR, et al. Backward extrapolation of V̇O2 from the O2 recovery curve after a voluntary maximal 400m swim. In: Hollander A, Huijing P, de Groot G, editors. International series on sport sciences. Vol. 14. Bio-mechanics and medicine in swimming. Champaign (IL): Human Kinetics, 1983: 222–7

    Google Scholar 

  129. Poole DC, Ward SA, Gardner GW, et al. Metabolic and respiratory profile of heavy and severe exercise. Eur J Appl Physiol 1988; 31: (1265–79)

    CAS  Google Scholar 

  130. Zoladz JA, Rademaker ACHJ, Sargeant AJ. Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans. J Physiol 1995; 488 (1): (211–7)

    PubMed  CAS  Google Scholar 

  131. Toussaint HM, Hollander AP. Energetics of competitive swimming: implications for training programmes. Sports Med 1994; 18: (384–405)

    Article  PubMed  CAS  Google Scholar 

  132. Miserocchi G, Confalonieri F, Lorenzi M. Mathematical modelling of competitive swimming. J Swim Res 1990; 4: (9–13)

    Google Scholar 

  133. Holmer I. Energetics and mechanical work in swimming. In: Hollander A, Huijing P, de Groot G, editors. International series on sport sciences. Vol. 19. Biomechanics and medicine in swimming. Champaign (IL): Human Kinetics, 1983: 154–64

    Google Scholar 

  134. Secher NH. Physiological and biomechanical aspects of rowing: implications for training. Sports Med 1993; 15: (24–42)

    Article  PubMed  CAS  Google Scholar 

  135. Kramer JF, Leger A, Paterson DH, et al. Rowing performance and selected descriptive, field, and laboratory variables. Can J Appl Physiol 1994; 19: (174–84)

    Article  PubMed  CAS  Google Scholar 

  136. Klusiewicz A. Changes in physical fitness of elite rowers throughout the annual training cycle before world championships. Biol Sport 1993; 10: (231–7)

    Google Scholar 

  137. Vermulst LJ, Vervoorm M, Boelens-Quist AM, et al. Analysis of seasonal training volume and working capacity in elite female rowers. Int J Sports Med 1991; 12: (567–72)

    Article  PubMed  CAS  Google Scholar 

  138. Steinacker JM. Physiological aspects of training in rowing. Int J Sports Med 1991; 12: (363–8)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billat, L.V. Use of Blood Lactate Measurements for Prediction of Exercise Performance and for Control of Training. Sports Med. 22, 157–175 (1996). https://doi.org/10.2165/00007256-199622030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199622030-00003

Keywords

Navigation