Skip to main content
Log in

Interval Training for Performance: A Scientific and Empirical Practice

Special Recommendations for Middle- and Long-Distance Running. Part II: Anaerobic Interval Training

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Studies of anaerobic interval training can be divided into 2 categories. The first category (the older studies) examined interval training at a fixed work-rate. They measured the time limit or the number of repetitions the individual was able to sustain for different pause durations. The intensities used in these studies were not maximal but were at about 130 to 160% of maximal oxygen uptake (V̇O2max). Moreover, they used work periods of 10 to 15 seconds interrupted by short rest intervals (15 to 40 seconds). The second category (the more recent studies) asked the participants to repeat maximal bouts with different pause durations (30 seconds to 4 to 5 minutes). These studies examined the changes in maximal dynamic power during successive exercise periods and characterised the associated metabolic changes in muscle.

Using short-interval training, it seems to be very difficult to elicit exclusively anaerobic metabolism. However, these studies have clearly demonstrated that the contribution of glycogenolysis to the total energy demand was considerably less than that if work of a similar intensity was performed continuously. However, the latter studies used exercise intensities that cannot be described as maximal. This is the main characteristic of the second category of interval training performed above the minimal velocity associated with vV̇O2max determined in an incremental test (V̇O2max)

Many studies on the long term physiological effect of supramaximal intermittent exercise have demonstrated an improvement in V̇O2max or running economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Margaria R, Oliva RD, di Prampero PE, et al. Energy utilization in intermittent exercise of supramaximal intensity. J Appl Physiol 1969; 26: 752–6

    PubMed  CAS  Google Scholar 

  2. Balsöm PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol 1992; 65: 144–9

    Article  Google Scholar 

  3. Christensen EH, Hedman R, Saltin B. Intermittent and continuous running. Acta Physiol Scand 1960; 50: 269–6

    Article  PubMed  CAS  Google Scholar 

  4. Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997; 29: 390–5

    Article  PubMed  CAS  Google Scholar 

  5. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 1996; 80: 876–84

    PubMed  CAS  Google Scholar 

  6. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75: 712–9

    PubMed  CAS  Google Scholar 

  7. Spriet LL, Lindinger MI, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 1989; 66: 8–13

    PubMed  CAS  Google Scholar 

  8. Hirvonen J, Rehunen S, Rusko H, et al. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol 1987; 56: 253–9

    Article  CAS  Google Scholar 

  9. Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 1992, 13: 528–33

    Article  PubMed  CAS  Google Scholar 

  10. Spriet LL. Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol 1992; 70: 157–65

    Article  PubMed  CAS  Google Scholar 

  11. Yoshida T, Watari H. Metabolic consequences of repeated exercise in long distance runners. Eur J Appl Physiol 1993; 67: 261–5

    Article  CAS  Google Scholar 

  12. Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30s of maximal sprint cycling in man. J Physiol (Lond) 1995; 15: 467–80

    Google Scholar 

  13. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the ‘crossover’ concept. J Appl Physiol 1994; 76: 2253–61

    PubMed  CAS  Google Scholar 

  14. Jenkins DG, Palmer J, Spillman D. The influence of dietary carbohydrate on performance of supramaximal intermittent exercise. Eur J Appl Physiol 1993; 67: 309–14

    Article  CAS  Google Scholar 

  15. Fox EL, Bartels RL, Billing CE, et al. Frequency and duration of interval training programs and changes in aerobic power. J Appl Physiol 1975; 38: 481–4

    PubMed  CAS  Google Scholar 

  16. Lesmes GR, Fox EL, Stevens C, et al. Metabolic responses of females to high intensity interval training of different frequencies. Med Sci Sport Exerc 1978; 10: 229–32

    CAS  Google Scholar 

  17. Fox EL, Bartels RL, Billings CE, et al. Intensity and distance of interval training programs and changes in aerobic power. Med Sci Sports Exerc 1973; 5: 18–22

    CAS  Google Scholar 

  18. Davies KJA, Packer L, Brooks GA. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys 1981; 209: 539–54

    Article  PubMed  CAS  Google Scholar 

  19. Davies KJA, Packer L, Brooks GA. Exercise bioenergetics following sprint training. Arch Biochem Biophys 1982; 215: 260–5

    Article  PubMed  CAS  Google Scholar 

  20. Simoneau JA, Lortie G, Boulay MR, et al. Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training. Human skeletal muscle fiber type alteration with high-intensity intermittent training. Int J Sports Med 1986; 7: 167–71

    Article  PubMed  CAS  Google Scholar 

  21. Simoneau JA, Lortie G, Boulay MR, et al. Human skeletal muscle fiber type alteration with high-intensity intermittent training. Eur J Appl Physiol 1985; 54: 250–3

    Article  CAS  Google Scholar 

  22. Simoneau JA, Lortie G, Boulay MR, et al. Effects of two high-intensity intermittent training programs interspersed by detraining on human skeletal muscle and performance. Eur J Appl Physiol 1987; 56: 516–21

    Article  CAS  Google Scholar 

  23. Billat V, Blondel N, Berthoin N. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol 1999; 80: 159–61

    Article  CAS  Google Scholar 

  24. Roberts AD, Billeter R, Howald H. Anaerobic muscle enzyme changes after interval training. Int J Sports Med 1982; 3: 18–21

    Article  PubMed  CAS  Google Scholar 

  25. Margaria R, Cerretelli P, Aghemo P, et al. Energy cost of running. J Appl Physiol 1963; 18: 367–70

    PubMed  CAS  Google Scholar 

  26. Linossier MT, Denis C, Dormois D, et al. Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol 1993; 67: 408–14

    Article  CAS  Google Scholar 

  27. Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67: 2376–82

    PubMed  CAS  Google Scholar 

  28. Hargreaves M, McKenna MJ, Jerkins DG, et al. Muscles metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 1998; 84: 1687–91

    PubMed  CAS  Google Scholar 

  29. Heugas AM, Brisswalter J, Vallier JM. Effet d’une période d’entraînement de trois mois sur le déficit maximal en oxygène chez des sprinters de haut niveau de performance. Can J Appl Physiol 1997; 22: 171–81

    PubMed  CAS  Google Scholar 

  30. MacDougall DJ, Hicks AL, MacDonald JR, et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 1998; 84: 2138–42

    Article  PubMed  CAS  Google Scholar 

  31. Houmard JA, Costill DL, Mitchell JB, et al. The role of anaerobic ability in middle distance running performance. Eur J Appl Physiol 1991; 62: 40–3

    Article  CAS  Google Scholar 

  32. Jenkins DG, Quigley BM. The influence of high-intensity exercise training on the Wlim-Tlim relationship. Med Sci Sports Exerc 1993; 25: 275–82

    PubMed  CAS  Google Scholar 

  33. Lechevalier JM, Vandewalle H, Chatard JC, et al. Relationship between the 4 mMol running velocity, the time-distance relationship and the Leger-Boucher test. Arch Int Physiol Biochem 1989; 97: 355–60

    Article  CAS  Google Scholar 

  34. Paavolainen L, Hakkinen K, Hamalainen I, et al. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 1999; 86: 1527–33

    Article  PubMed  CAS  Google Scholar 

  35. Franch J, Madsen K, Djurhuus MS, et al. Improved running economy following intensified training correlates with reduces ventilatory demands. Med Sports Sci Exerc 1998; 30: 1250–6

    Article  CAS  Google Scholar 

  36. Komi PV, Kyröläiinen H. Mechanical efficiency of stretch-shortening cycle exercise. In: Marconnet P, Saltin B, Komi P, et al., editors. Human muscular function during dynamic exercise. Basel: Karger, 1996: 44–56

    Google Scholar 

  37. Flynn MG, Fahlman M, Braun WA, et al. Effects of resistance training on selected indices of immune function in elderly women. J Appl Physiol 1999; 86: 1905–13

    PubMed  CAS  Google Scholar 

  38. Wells CL, Pate RR. Training for performance of prolonged exercise. In: Lamb DR, Murray R, editors. Perspectives in exercise science and sports medicine. Vol. 1. Indianapolis (IN): Benchmark Press, 1988: 357–91

    Google Scholar 

  39. Tanaka H, Swensen T. Impact of resistance training on endurance performance. Sports Med 1985; 6: 266–70

    Google Scholar 

  40. Balsom PD, Ekblom B, Söderlund K, et al. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports 1993; 3: 143–9

    Article  Google Scholar 

  41. Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and V̇O2max. Med Sci Sports Exerc 1996; 28: 1327–30

    Article  PubMed  CAS  Google Scholar 

  42. Ahmaidi S, Masse-Biron J, Adam B, et al. Effects of interval training at the ventilatory threshold on clinical and cardiorespiratory responses in elderly humans. Eur J Appl Physiol 1998; 78: 170–6

    Article  CAS  Google Scholar 

  43. Suominen H, Heikkinen E, Liesen H, et al. Effect of 8-weeks endurance training on skeletal muscle metabolism in 56–70 year old sedentary men. Eur J Appl Physiol 1977; 37: 173–80

    Article  CAS  Google Scholar 

  44. Billat V, Slawinski J, Bocquet V, et al. Very short interval training (15s-15s) around the critical velocity allows middle-aged runners to maintain V̇O2max for 14 min. Int J Sports Med. In press

  45. Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol 1989; 67: 453–65

    PubMed  Google Scholar 

  46. Daniels J. Jacks Daniels’ formula. Champaign (IL): Human Kinetics Publishers, 1998

    Google Scholar 

  47. Noakes T. Lore of running. Champaign (IL): Human Kinetics Publishers, 1991

    Google Scholar 

  48. Billat V, Koralsztein JP. Significance of the velocity at V̇O2max and its time to exhaustion at this velocity. Sports Med 1996; 22: 90–108

    Article  PubMed  CAS  Google Scholar 

  49. Daniels J, Scardina N. Interval training and performance. Sports Med 1984; 1: 327–34

    Article  PubMed  CAS  Google Scholar 

  50. Gorostiaga EM, Walter CB, Foster C, et al. Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol 1991; 63: 101–7

    Article  CAS  Google Scholar 

  51. Billat V, Slawinski J, Bocquet V, et al. Intermittent runs at vV̇O2max enables subjects to remain at V̇O2max for a longer time than submaximal runs. Eur J Appl Physiol 2000; 81: 188–96

    Article  PubMed  CAS  Google Scholar 

  52. Saltin B, Essen B. Muscle glycogen, lactate, ATP, and CP in intermittent exercise. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. Advances in experimental medicine and biology. Vol. 11. New York: Plenum Press, 1971: 419–24

    Chapter  Google Scholar 

  53. Saltin B, Essen B, Pedersen PK. Intermittent exercise: its physiology and some practical applications. In: Joekle E, Anand RL, Stoboy H, editors. Advances in exercise physiology. Basel: Karger, 1976: 9: 23–51 (Medicine Sport; 5)

    Google Scholar 

  54. Pepper ML, Housh TJ, Johnson GO. The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. Int J Sports Med 1992; 13: 121–4

    Article  PubMed  CAS  Google Scholar 

  55. Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sports Sci Rev, 1996; 24: 35–70

    Article  CAS  Google Scholar 

  56. Florence SL, Weir JP. Relationship of critical velocity to marathon running performance. Eur J Appl Physiol 1997; 75: 274–8

    Article  CAS  Google Scholar 

  57. Astrand PO, Rodahl K. Textbook of work physiology. 3rd ed. New York: McGraw Hill, 1986

    Google Scholar 

  58. Robinson DM, Robinson SM, Hume PA, et al. Training intensity of elite male distance runners. Med Sci Sports Exerc 1991; 23: 1078–82

    PubMed  CAS  Google Scholar 

  59. Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the V̇O2max test predicts running performance. J Sports Sci 1990; 8: 35–45

    Article  PubMed  CAS  Google Scholar 

  60. Watson AWS, O’Donovan DJ. The effects of five weeks of controlled interval training on youths of diverse pre-training condition. J Sports Med Phys Fitness 1977; 17: 139–46

    PubMed  CAS  Google Scholar 

  61. Adeniran SA, Toriola AL. Effects of continuous and interval running programmes on aerobic and anaerobic capacities in schoolgirls aged 13 to 17 years. J Sports Med Phys Fitness 1988; 28: 260–6

    PubMed  CAS  Google Scholar 

  62. Bar-Or O. The young athlete: some physiological considerations. J Sports Sci 1995; 13: 531–3

    Article  Google Scholar 

  63. Fleck SJ, Kraemer WJ. Designing resistance training programs. Champaign (IL): Human Kinetics Publishers, 1997

    Google Scholar 

  64. Hatter AA, Harrison AC, Catledge-Kirk PA. Anaerobic threshold alterations caused by interval training in 11-years olds. J Sports Med Phys Fitness 1990; 30: 53–6

    Google Scholar 

  65. Mahon AD, Vaccaro P. Ventilatory threshold and V̇O2max changes in children following endurance training. Med Sci Sports Exerc 1989; 4: 425–31

    Google Scholar 

  66. Billat V, Gratas-Delamarche A, Monnier M, et al. Test to approach maximal lactate steady-state in 12-year old boys and girls. Arch Biochem Physiol 1995; 103: 65–72

    Article  CAS  Google Scholar 

  67. Berthoin S, Manteca F, Gerbeaux M, et al. Effect of a 12-week training programme on maximal aerobic speed (MAS) and running time to exhaustion at 100% of MAS for students aged 14 to 17 years. J Sports Med Phys Fitness 1995; 35: 251–6

    PubMed  CAS  Google Scholar 

  68. Billat V, Flechet B, Petit B, et al. Interval training at V̇O2max: effects on aerobic performance and overtraining markers. Med Sci Sport Exerc 1999; 31: 156–63

    Article  CAS  Google Scholar 

  69. Rostein A, Dotan R, Bar-Or O, et al. Effect of training on anaerobic threshold, maximal aerobic power and anaerobic performance of preadolescent boys. Int J Sports Med Phys 1986; 7: 281–6

    Article  Google Scholar 

  70. Docherty D, Wenger HA, Collis ML. The effects of resistance training on aerobic power of young boys. A test to approach maximal lactate steady-state in 12-year old boys and girls. Med Sci Sport Exerc 1987; 19: 389–92

    Article  CAS  Google Scholar 

  71. Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc 1989; 21: 563–8

    PubMed  CAS  Google Scholar 

  72. Denis C, Fouquet R, Poty P, et al. Effect of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med 1982; 3: 208–13

    Article  PubMed  CAS  Google Scholar 

  73. Fukuba Y, Walsh ML, Morton RH, et al. Effect of endurance training on blood lactate clearance after maximal exercise. J Sports Sci 1999; 17: 239–48

    Article  PubMed  CAS  Google Scholar 

  74. Daniels JT, Yarbough RA, Foster C. Changes in V̇O2max and running performance with training. Eur J Appl Physiol 1978; 39: 249–54

    Article  CAS  Google Scholar 

  75. Westgarth-Taylor C, Hawley JA, Richard S, et al. Metabolic and performance adaptations to interval training in endurance-trained cyclists. Eur J Appl Physiol 1997; 75: 298–304

    Article  CAS  Google Scholar 

  76. Weston AH, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity interval-training well-trained cyclists. Eur J Appl Physiol 1997; 75: 7–13

    Article  CAS  Google Scholar 

  77. Lindsay FH, Hawley JA, Myburgh KH, et al. Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc 1996; 28: 1427–37

    Article  PubMed  CAS  Google Scholar 

  78. Septo NK, Hawley JA, Dennis SC, et al. Effects of different interval training programs on cycling time-trial performance. Med Sci Sports Exerc 1999; 31: 736–41

    Article  Google Scholar 

  79. Palmer GS, Hawley JA, Dennis SC, et al. Heart rate responses during a 4-d cycle stage race. Med Sci Sports Exerc 1994; 26: 1278–83

    PubMed  CAS  Google Scholar 

  80. Green H, Patla M. Maximal aerobic power: neuro-muscular and metabolic considerations. Med Sci Sports Exerc 1992; 24: 38–46

    PubMed  CAS  Google Scholar 

  81. Spencer MR, Gastin PB, Payne WR. Energy system contribution during 400 to 1500 metres. New Studies Athletics 1996; 4: 59–65

    Google Scholar 

  82. Weyand PG, Cureton KJ, Conley DS, et al. Peak oxygen deficit predicts sprint and middle-distance track performance. Med Sci Sports Exerc 1994; 9: 1174–80

    Google Scholar 

Download references

Acknowledgements

This study was supported by grants from la Caisse Centrale de Activités Sociales d’Electricité et Gaz de France.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billat, L.V. Interval Training for Performance: A Scientific and Empirical Practice. Sports Med 31, 75–90 (2001). https://doi.org/10.2165/00007256-200131020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131020-00001

Keywords

Navigation