Skip to main content
Log in

Characteristics of Track Cycling

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Track cycling events range from a 200m flying sprint (lasting 10 to 11 seconds) to the 50km points race (lasting ⊄ 1 hour).Unlike road cycling competitions where most racing is undertaken at submaximal power outputs, the shorter track events require the cyclist to tax maximally both the aerobic and anaerobic (oxygen independent) metabolic pathways. Elite track cyclists possess key physical and physiological attributes which are matched to the specific requirements of their events: these cyclists must have the appropriate genetic predisposition which is then maximised through effective training interventions. With advances in technology it is now possible to accurately measure both power supply and demand variables under competitive conditions. This information provides better resolution of factors that are important for training programme design and skill development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Table II

Similar content being viewed by others

References

  1. Olds TS, Norton KI, Craig NP. Mathematical model of cycling performance. J Appl Physiol 1993; 75: 730–7

    PubMed  CAS  Google Scholar 

  2. Bassett DR, Kyle CR, Passfield L, et al. Comparing cycling world hour records, 1967–1996: modelling with empirical data. Med Sci Sports Exerc 1999; 31: 1665–76

    Article  PubMed  Google Scholar 

  3. Padilla S, Mujika I. Scientific approach to the 1-hour cycling world record: a case study. J Appl Physiol 2000; 89: 1522–7

    PubMed  CAS  Google Scholar 

  4. Massagrande A. Agonistic Cycling. Milano: Edizioni Landoni, 1983

    Google Scholar 

  5. Burke ER. Road and track cycling. In: Lamb DR, Knuttgen HG, Murray R, editors. Perspectives in exercise science and sports medicine. Vol. 7: Physiology and nutrition for competitive sport. Carmel (IN): Cooper Publishing Group, 1994: 303–28

    Google Scholar 

  6. Oehme W, Lychatz S. Bahnradsport. In: Weib C, Seidl H, editors. Handbuch radsport. Munich: BLV Verlagsgesellschaft, 1996: 233–304

    Google Scholar 

  7. Jeukendrup AE, Craig NP, Hawley JA. The physiological demands of world class cycling. J Sci Med Sport 2000; 3: 400–19

    Article  Google Scholar 

  8. Craig NP, Walsh C, Martin DT, et al. Protocols for the physiological assessment of high performance track, road and mountain cyclists. In: Gore CJ, editor. Physiological tests for elite athletes/Australian Sports Commission. Champaign (IL): Human Kinetics, 2000: 258–77

    Google Scholar 

  9. Craig NP, Norton KI, Bourdon PC, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. Eur J Appl Physiol 1993; 67: 150–8

    Article  CAS  Google Scholar 

  10. Craig NP, Norton KI, Conyers RAJ, et al. Influence of test duration and event specificity on maximal oxygen deficit of high performance track cyclists. Int J Sports Med 1995; 16: 534–40

    Article  PubMed  CAS  Google Scholar 

  11. Craig NP, Pyke FS, Norton KI. Specificity of test duration when assessing the anaerobic lactacid capacity of high performance track cyclists. Int J Sports Med 1989; 10: 237–42

    Article  PubMed  CAS  Google Scholar 

  12. Sleivert G. Training and competition in the mystery zone: a report from the first annual USOC-ACSM human performance summit [online]. Available from: URL: http://www.sportsci.org/news/news9709/sleivert.html/ [Accessed 1999 Jun 1]

  13. Burke ER. The physiology of cycling. In: Burke ER, editor. Science of cycling. Champaign (IL): Human Kinetics, 1986: 1–19

    Google Scholar 

  14. Fox EL, Bowers RW, Foss ML. The physiological basis of physical education and athletics. 4th ed. Dubuque: Wm C Brown Publishers, 1989

    Google Scholar 

  15. Jurbala P. Training and nutrition for racing cyclists. New York (ON): Ontario Cycling Association, 1983

    Google Scholar 

  16. Faria IE, Cavanagh PR. The physiology and biomechanics of cycling. New York: John Wiley and Sons, 1978

    Google Scholar 

  17. Faina M, Gallozzi C, Marini C, et al. Energy cost of several sport disciplines by miniaturised telemetric O2 intake measurements. First IOC World Congress on Sport Sciences; 1989 Oct 28-Nov 3; Colorado Springs (CO), 76–77

  18. Astrand P-O, Rodahl K. Textbook of work physiology. 2nd rev. ed. New York: McGraw-Hill, 1986

    Google Scholar 

  19. Medbo JI, Mohn A, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988; 64: 50–60

    PubMed  CAS  Google Scholar 

  20. Gastin PB, Lawson DL. Variable resistance all-out test to generate accumulated oxygen deficit and predict anaerobic capacity. Eur J Appl Physiol 1994; 69: 331–6

    Article  CAS  Google Scholar 

  21. Medbo JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-term exhausting bicycle exercise. J Appl Physiol 1989; 67: 1881–6

    PubMed  CAS  Google Scholar 

  22. Serresse O, Lortie G, Bouchard C, et al. Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med 1988; 9: 456–60

    Article  PubMed  CAS  Google Scholar 

  23. Withers RT, Van Der Ploeg G, Finn JP. Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an air-braked ergometer. Eur J Appl Physiol 1993; 67: 185–91

    Article  CAS  Google Scholar 

  24. Yoshida T, Udo M, Ohmori T, et al. Day-to-day changes in oxygen uptake kinetics at the onset of exercise during strenuous endurance training. Eur J Appl Physiol 1992; 64: 78–83

    Article  CAS  Google Scholar 

  25. McLean BD, Parker AW. An anthropometric analysis of the elite Australian track cyclist. J Sports Sci 1989; 7: 247–55

    Article  PubMed  CAS  Google Scholar 

  26. Body size profiles for male and female Olympic track cyclists [online]. URL: www.Olympics.com [Accessed 2000 Oct 18]

  27. Participant’s anthropometric data [online]. Available from: URL: http://www.olympics.com/eng/sports/CT/part.html [Accessed 2000 Oct 13]

  28. Craig NP. South Australian representative sportsmen: relative body fat, somatotype and anthropometric prediction of body density [master’s thesis] Adelaide: Flinders University of South Australia, 1984

    Google Scholar 

  29. Foley JP, Bird SR, White JA. Anthropometric comparison of cyclists from different events. Br J Sports Med 1989; 23: 30–3

    Article  PubMed  CAS  Google Scholar 

  30. Norton KI, Olds T, Olive S, et al. Anthropometry and sports performance. In: Norton KI, Olds T, editors. Anthropometrica. Sydney: University of New South Wales Press, 1996: 289–364

    Google Scholar 

  31. Gregor RJ. Biomechanics of Cycling. In: Garrett WE, Kirkendall DT, editors. Exercise and Sport Science. Philadelphia (PA): Lippincott Williams and Williams, 2000: 515–37

    Google Scholar 

  32. Mackova EJ, Melichna Z, Placheta D, et al. Skeletal muscle characteristics of sprint cyclists and nonathletes. Int J Sports Med 1986; 7: 295–7

    Article  PubMed  CAS  Google Scholar 

  33. Neumann G. Cycling. In: Shephard RJ, Astrand P-O, editors. Endurance in sport. Oxford: Blackwell Scientific Publications, 1992: 582–96

    Google Scholar 

  34. Pyke FS, Craig NP, Norton KI. Physiological and psychological responses of pursuit and sprint track cyclists to a period of reduced training. In: Burke ER, Newsom MM, editors. Medical and scientific aspects of cycling. Champaign (IL): Human Kinetics, 1988: 147–63

    Google Scholar 

  35. Telford R, Tumilty D, Damm G. Skinfold measurements in well performed Australian athletes. Sports Sci Med Q 1984; 1: 13–16

    Google Scholar 

  36. White JA, Quinn G, Al-Dawalibi M, et al. Seasonal changes in cyclist’s performance. II. The British Olympic track squad. Br J Sports Med 1982; 16: 13–21

    Article  PubMed  CAS  Google Scholar 

  37. Withers RT, Craig NP, Bourdon PC, et al. Relative body fat and anthropometric prediction of body density of male athletes. Eur J Appl Physiol 1987; 56: 191–200

    Article  CAS  Google Scholar 

  38. Olds TS, Norton KI, Craig NP, et al. The limits of the possible: models of energy supply and demand in cycling. Aust J Sci Med Sport 1995; 2: 29–33

    Google Scholar 

  39. Kyle C. The mechanics and aerodynamics of cycling. In: Burke ER, Newsom MM, editors. Medical and scientific aspects of cycling. Champaign (IL): Human Kinetics, 1988: 235–51

    Google Scholar 

  40. Norton KI, Squires B, Norton LH, et al. Exercise stimulus increases ventilation from maximal to supramaximal intensity. Eur J Appl Physiol 1995; 70: 115–25

    Article  CAS  Google Scholar 

  41. Squires B. Ventilation and hypoxaemia during exercise in highly trained athletes [honours degree thesis]. Newcastle: University of Newcastle, 1991

    Google Scholar 

  42. Bouchard C, Dionne FT, Simoneau JA, et al. Genetics of aerobic and anaerobic performances. In: Holloszy JO, editor. Exercise and sport sciences review. Baltimore (MA): Williams and Wilkins, 1992; 20: 27–58

    Google Scholar 

  43. Burke ER, Cerny F, Costill D, et al. Characteristics of skeletal muscle in competitive cyclists. Med Sci Sports Exerc 1977; 9: 109–12

    CAS  Google Scholar 

  44. Gore CJ, Hahn A, Rice A, et al. Altitude training at 2690m does not increase total haemoglobin mass or sea level VȮ2max in world class track cyclists. J Sci Med Sport 1998; 1: 156–70

    Article  PubMed  CAS  Google Scholar 

  45. Sjogaard G, Nielsen B, Mikkelsen F, et al. Physiology in cycling. New York: Movement Publications, 1985

    Google Scholar 

  46. Telford RD, Hahn AG, Pyne DB, et al. Strength, anaerobic capacities and aerobic power of Australian track and road cyclists. Excel 1990; 6: 20–2

    Google Scholar 

  47. Aunola S, Marniemi J, Alanen E, et al. Muscle metabolic profile and oxygen transport capacity as determinants of aerobic and anaerobic thresholds. Eur J Appl Physiol 1988; 57: 726–34

    Article  CAS  Google Scholar 

  48. Ivy JH, Withers RT, Van Handel PJ, et al. Muscle respiratory capacity and fibre type as determinants of the lactate threshold. J Appl Physiol 1980; 48: 523–7

    PubMed  CAS  Google Scholar 

  49. Saltin B. Physiological and biochemical basis of aerobic and anaerobic capacities in man: effect of training and range of adaptation. In: Russo P, Gass G, editors. Exercise, nutrition and performance. Sydney: Cumberland College of Health Sciences, 1985: 41–78

    Google Scholar 

  50. Jacobs I. Blood lactate: implications for training and sports performance. Sports Med 1986; 3: 10–25

    Article  PubMed  CAS  Google Scholar 

  51. Burke ER, Fleck S, Dickson T. Post-competition blood lactate concentrations in competitive track cyclists. Br J Sports Med 1981; 15: 242–5

    Article  PubMed  CAS  Google Scholar 

  52. de Koning JJ, Bobbert MF, Foster C. Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport 1999; 2: 266–77

    Article  PubMed  Google Scholar 

  53. Broker JP, Kyle CR, Burke ER. Racing cyclist power requirements in the 4000-m individual and team pursuits. Med Sci Sports Exerc 1999; 31: 1677–85

    Article  PubMed  CAS  Google Scholar 

  54. Saltin B. Anaerobic capacity: past, present and prospective. In: Taylor AW, Gollnick PD, Green HJ, et al, editors. Biochemistry of exercise. VII. Champaign (IL): Human Kinetics, 1990: 387–412

    Google Scholar 

  55. Medbo JL, Burgers S. Effect of training on the anaerobic capacity. Med Sci Sports Exerc 1990; 22: 501–7

    PubMed  CAS  Google Scholar 

  56. Capelli C, Schena F, Zamparo P, et al. Energetics of best performances in track cycling. Eur J Appl Physiol 1998; 30: 614–24

    CAS  Google Scholar 

  57. Jones SM, Passfield L. The dynamic calibration of bicycle power measuring cranks. In: Haake SJ, editor. The engineering of sport. Oxford: Blackwell Science Ltd, 1998: 265–74

    Google Scholar 

  58. Faria IE. Energy expenditure, aerodynamics and medical problems in cycling. Sports Med 1992; 14: 43–63

    Article  PubMed  CAS  Google Scholar 

  59. Boulay MR. Physiological monitoring of elite cyclists. Sports Med 1995; 20: 1–11

    Article  PubMed  CAS  Google Scholar 

  60. Burke ER. Physiology of cycling. In: Garrett WE, Kirkendall DT, editors. Exercise and sport science. Philadelphia (PA): Lippincott Williams and Wilkins, 2000: 759–70

    Google Scholar 

  61. Hawley J, Burke L. Peak Performance: training and nutritional strategies for sport. St Leonards (NSW): Allen and Unwin, 1998

    Google Scholar 

  62. Conconi F, Alfieri N. Training the physiological characteristics employed in road cycling. In: Gregor RJ, Conconi F, editors. Road cycling. Oxford: Blackwell Scientific Ltd, 2000: 46–53

    Google Scholar 

  63. Hopkins WG. Quantification of training in competitive sports: methods and applications. Sports Med 1991; 12: 161–83

    Article  PubMed  CAS  Google Scholar 

  64. Foster C, Daniels JT, Seiler S. Perspectives on correct approaches to training. In: Lehmann M, Foster C, Gastmann U, et al., editors. Overload, performance incompetence and regeneration in sport. New York: Kluwer Academic/Plenum Publishers, 1999: 27–42

    Chapter  Google Scholar 

  65. Foster C, Snyder A, Welsh R. Monitoring of training, warm up and performance in athletes. In: Lehmann M, Foster C, Gastmann U, et al., editors. Overload, performance incompetence and regeneration in sport. New York: Kluwer Academic/Plenum Publishers, 1999: 43–52

    Chapter  Google Scholar 

  66. Rowbottom DG. Periodisation of training. In: Garrett WE,Kirkendall DT, editors. Exercise and sport science. Philadelphia (PA): Lippincott Williams and Wilkins, 2000: 499–512

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr Charlie Walsh and Australia’s elite track cyclists for their willingness to participate in a number of studies during the last 15 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil P. Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, N.P., Norton, K.I. Characteristics of Track Cycling. Sports Med 31, 457–468 (2001). https://doi.org/10.2165/00007256-200131070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131070-00001

Keywords

Navigation