Skip to main content
Log in

Exercise-Associated Hyponatraemia

A Mathematical Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In 1958, Edelman and colleagues empirically showed plasma sodium concentration ([Na+]p) to be primarily a function of the sum of exchangeable sodium and potassium (E) divided by total body water (TBW). Based on Edelman’s equation, Nguyen and Kurtz derived an equation to show how [Na+]p changes as a function of TBW, change in TBW (ΔTBW), and change in the sum of exchangeable sodium and potassium (ΔE). Using the Nguyen-Kurtz equation, the present study examines the sensitivity of [Na+]p to these parameters: [Na+]p is very sensitive to ΔTBW and moderately sensitive to ΔE, and is modulated by TBW. For example, for a person with 50L TBW, a net increase of 1L water lowers [Na+]p by 3.2 mEq/L, but for a person with 25L TBW it lowers [Na+]p by 6.3 mEq/L (assuming initial [Na+]p is 140 mEq/L). In each case, a loss of 159 mEq of sodium plus potassium (roughly equivalent to 1.5 teaspoons of table salt) would be required to produce the same effect as the net increase of 1L water. The present review demonstrates why fluid overload predominates over electrolyte loss in the aetiology of exercise-associated hyponatraemia (EAH), and why the excretion of electrolyte-dilute urine is highly effective in correcting EAH (nonetheless, loss of sodium and potassium is significant in long events in warm weather). Sports drinks will, if overconsumed, result in hyponatraemia. Administration of a sports drink to an athlete with fluid overload hyponatraemia further lowers [Na+]p and increases fluid overload. Administration of either a sports drink or normal (0.9%) saline increases fluid overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1
Table IV
Table V
Table VI
Fig. 2
Table VII
Table VIII
Table IX
Fig. 3
Table X

Similar content being viewed by others

References

  1. Kurtz I, Nguyen MK. A simple quantitative approach to analyzing the generation of the dysnatremias. Clin Exp Nephrol 2003; 7: 138–44

    Article  PubMed  Google Scholar 

  2. Nguyen MK, Kurtz I. A new quantitative approach to the treatment of the dysnatremias. Clin Exp Nephrol 2003; 7: 125–37

    Article  PubMed  Google Scholar 

  3. Nguyen MK, Kurtz I. Analysis of current formulas used for treatment of the dysnatremias. Clin Exp Nephrol 2004; 8: 12–6

    Article  PubMed  Google Scholar 

  4. Nguyen MK, Kurtz I. Are the total exchangeable sodium, total exchangeable potassium and total body water the only determinants of the plasma water sodium concentration? Nephrol Dial Transplant 2003; 18: 1266–71

    Article  PubMed  CAS  Google Scholar 

  5. Nguyen MK, Kurtz I. Determinants of plasma water sodium concentration as reflected in the Edelman equation: role of osmotic and Gibbs-Donnan equilibrium. Am J Physiol Renal Physiol 2004; 286: F828–37

    Article  Google Scholar 

  6. Nguyen MK, Kurtz I. New insights into the pathophysiology of the dysnatremias: a quantitative analysis. Am J Physiol Renal Physiol 2004; 287: F172–80

    Article  Google Scholar 

  7. Nguyen MK, Kurtz I. Role of potassium in hypokalemia-induced hyponatremia: lessons learned from the Edelman equation. Clin Exp Nephrol 2004; 8: 98–102

    PubMed  CAS  Google Scholar 

  8. Ayus JC, Varon J, Arieff AI. Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med 2000; 132: 711–4

    PubMed  CAS  Google Scholar 

  9. Backer HD, Shopes E, Collins SL, et al. Exertional heat illness and hyponatremia in hikers. Am J Emerg Med 1999; 17: 532–9

    Article  PubMed  CAS  Google Scholar 

  10. Clark JM, Gennari FJ. Encephalopathy due to severe hyponatremia in an ultramarathon runner. West J Med 1993; 159: 188–9

    PubMed  CAS  Google Scholar 

  11. Frizzell RT, Lang GH, Lowance DC, et al. Hyponatremia and ultramarathon running. JAMA 1986; 255: 772–4

    Article  PubMed  CAS  Google Scholar 

  12. Hew TD, Chorley JN, Cianca JC, et al. The incidence, risk factors, and clinical manifestations of hyponatremia in marathon runners. Clin J Sport Med 2003; 13: 41–7

    Article  PubMed  Google Scholar 

  13. Irving RA, Noakes TD, Buck R, et al. Evaluation of renal function and fluid homeostasis during recovery from exercise-induced hyponatremia. J Appl Physiol 1991; 70: 342–8

    PubMed  CAS  Google Scholar 

  14. Nelson PB, Robinson AG, Kapoor W, et al. Hyponatremia in a marathoner. Phys Sportsmed 1988; 16: 78–88

    Google Scholar 

  15. Noakes TD, Sharwood K, Collins M, et al. The dipsomania of great distance: water intoxication in an Ironman triathlete. Br J Sports Med 2004; 38: E16

    Article  Google Scholar 

  16. Noakes TD, Sharwood K, Speedy D, et al. Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2135 weighed competitive athletic performances. Proc Natl Acad Sci U S A. In press

  17. Noakes TD. Hyponatremia in distance athletes: pulling the IV on the ‘dehydration myth’. Phys Sportsmed 2000; 28: 71–6

    Article  PubMed  CAS  Google Scholar 

  18. O’Brien KK, Montain SJ, Corr WP, et al. Hyponatremia associated with overhydration in US Army trainees. Mil Med 2001; 166: 405–10

    PubMed  Google Scholar 

  19. Putterman C, Levy L, Rubinger D. Transient exercise-induced water intoxication and rhabdomyolysis. Am J Kidney Dis 1993; 21: 206–9

    PubMed  CAS  Google Scholar 

  20. Shopes EM. Drowning in the desert: exercise-induced hyponatremia at the Grand Canyon. J Emerg Nurs 1997; 23: 586–90

    Article  PubMed  CAS  Google Scholar 

  21. Speedy DB, Noakes TD, Schneider C. Exercise-associated hyponatremia: a review. Emerg Med (Fremantle) 2001; 13: 17–27

    Article  CAS  Google Scholar 

  22. Hew-Butler T, Almond C, Ayus JC, et al. Consensus Statement of the 1st International Exercise-Associated Hyponatremia Consensus Development Conference, Cape Town, South Africa 2005. Clin J Sport Med 2005; 15: 208–13

    Article  PubMed  Google Scholar 

  23. Speedy DB, Rogers I, Safih S, et al. Hyponatremia and seizures in an ultradistance triathlete. J Emerg Med 2000; 18: 41–4

    Article  PubMed  CAS  Google Scholar 

  24. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med 2000; 342: 1581–9

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong LE, Curtis WC, Hubbard RW, et al. Symptomatic hyponatremia during prolonged exercise in heat. Med Sci Sports Exerc 1993; 25: 543–9

    PubMed  CAS  Google Scholar 

  26. Flinn SD, Sherer RJ. Seizure after exercise in the heat: recognizing life-threatening hyponatremia. Phys Sportsmed 2000; 28: 61–7

    Article  PubMed  CAS  Google Scholar 

  27. Gardner JW. Death by water intoxication. Mil Med 2002; 167: 432–4

    PubMed  Google Scholar 

  28. Garigan TP, Ristedt DE. Death from hyponatremia as a result of acute water intoxication in an army basic trainee. Mil Med 1999; 164: 234–8

    PubMed  CAS  Google Scholar 

  29. Hew TD. Do the numbers add up? [author reply]. Clin J Sport Med 2003; 13: 192–3

    Article  Google Scholar 

  30. Speedy DB, Rogers IR, Noakes TD, et al. Diagnosis and prevention of hyponatremia at an ultradistance triathlon. Clin J Sport Med 2000; 10: 52–8

    Article  PubMed  CAS  Google Scholar 

  31. Speedy DB, Rogers IR, Noakes TD, et al. Exercise-induced hyponatremia in ultradistance triathletes is caused by inappropriate fluid retention. Clin J Sport Med 2000; 10: 272–8

    Article  PubMed  CAS  Google Scholar 

  32. Speedy DB, Noakes TD, Boswell T, et al. Response to a fluid load in athletes with a history of exercise induced hyponatremia. Med Sci Sports Exerc 2001; 33: 1434–42

    Article  PubMed  CAS  Google Scholar 

  33. Edelman IS, Leibman J, O’Meara MP, et al. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest 1958; 37: 1236–56

    Article  PubMed  CAS  Google Scholar 

  34. Barsoum NR, Levine BS. Current prescriptions for the correction of hyponatraemia and hypernatraemia: are they too simple? Nephrol Dial Transplant 2002; 17: 1176–80

    Article  PubMed  Google Scholar 

  35. Pham PC, Chen PV, Pham PT. Overcorrection of hyponatremia: where do we go wrong? Am J Kidney Dis 2000; 36: E12

    Article  Google Scholar 

  36. Bartter FC, Schwartz WB. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 1967; 42: 790–806

    Article  PubMed  CAS  Google Scholar 

  37. Sawka MN, Convertino VA, Eichner ER, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 2000; 32: 332–48

    Article  PubMed  CAS  Google Scholar 

  38. Mack GW, Yang R, Hargens AR, et al. Influence of hydrostatic pressure gradients on regulation of plasma volume after exercise. J Appl Physiol 1998; 85: 667–75

    PubMed  CAS  Google Scholar 

  39. Nose H, Mack GW, Shi XR, et al. Shift in body fluid compartments after dehydration in humans. J Appl Physiol 1988; 65: 318–24

    PubMed  CAS  Google Scholar 

  40. Barr SI, Costill DL, Fink WJ. Fluid replacement during prolonged exercise: effects of water, saline, or no fluid. Med Sci Sports Exerc 1991; 23: 811–7

    PubMed  CAS  Google Scholar 

  41. Costill DL, Cote R, Fink W. Muscle water and electrolytes following varied levels of dehydration in man. J Appl Physiol 1976; 40: 6–11

    PubMed  CAS  Google Scholar 

  42. Guyton AC, Hall JE. Textbook of medical physiology. 10th ed. Philadelphia (PA): WB Saunders, 2000

    Google Scholar 

  43. Edelman IS. The pathogenesis of hyponatremia: physiologic and therapeutic implications. Metabolism 1956; 5: 500–7

    PubMed  CAS  Google Scholar 

  44. Edelman IS, Leibman J. Anatomy of body water and electrolytes. Am J Med 1959; 27: 256–77

    Article  PubMed  CAS  Google Scholar 

  45. Lord RC. Osmosis, osmometry, and osmoregulation. Postgrad Med J 1999; 75: 67–73

    PubMed  CAS  Google Scholar 

  46. Kozono D, Yasui M, King LS, et al. Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Invest 2002; 109: 1395–9

    PubMed  CAS  Google Scholar 

  47. Alpern RJ, Saxton CR, Seldin DW. Clinical interpretation of laboratory values. In Kokko JP, Tannen RL, editors. Fluids and electrolytes. 2nd ed. Philadelphia (PA): WB Saunders, 1990

    Google Scholar 

  48. Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. 5th ed. New York: McGraw-Hill Information Services, 2001

    Google Scholar 

  49. Jarvela K, Koskinen M, Koobi T. Effects of hypertonic saline (7.5%) on extracellular fluid volumes in healthy volunteers. Anaesthesia 2003; 58: 878–81

    Article  PubMed  CAS  Google Scholar 

  50. Sanders B, Noakes TD, Dennis SC. Water and electrolyte shifts with partial fluid replacement during exercise. Eur J Appl Physiol Occup Physiol 1999; 80: 318–23

    Article  PubMed  CAS  Google Scholar 

  51. Sanders B, Noakes TD, Dennis SC. Sodium replacement and fluid shifts during prolonged exercise in humans. Eur J Appl Physiol 2001; 84: 419–25

    Article  PubMed  CAS  Google Scholar 

  52. Yawata T. Effect of potassium solution on rehydration in rats: comparison with sodium solution and water. Jpn J Physiol 1990; 40: 369–81

    Article  PubMed  CAS  Google Scholar 

  53. Harned HS, Owen BB. The physical chemistry of electrolytic solutions. 3rd ed. New York: Reinhold Publishing Corp, 1958

    Google Scholar 

  54. Edelman IS, James AH, Baden H, et al. Electrolyte composition of bone and the penetration of radiosodium and deuterium oxide into dog and human bone. J Clin Invest 1954; 33: 122–31

    Article  PubMed  CAS  Google Scholar 

  55. Bergstrom WH, Wallace WM. Bone as a sodium and potassium reservoir. J Clin Invest 1954; 33: 867–73

    Article  PubMed  CAS  Google Scholar 

  56. Heer M, Baisch F, Kropp J, et al. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol 2000; 278: F585–95

    Google Scholar 

  57. Titze J, Maillet A, Lang R, et al. Long-term sodium balance in humans in a terrestrial space station simulation study. Am J Kidney Dis 2002; 40: 508–16

    Article  PubMed  CAS  Google Scholar 

  58. Titze J, Shakibaei M, Schafflhuber M, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol 2004; 287: H203–8

    Article  Google Scholar 

  59. Titze J, Lang R, Ilies C, et al. Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol 2003; 285: F1108–17

    Google Scholar 

  60. Wilson GM, Edelman IS, Brooks L, et al. Metabolic changes associated with mitral valvuloplasty. Circulation 1954; 9: 199–219

    Article  PubMed  CAS  Google Scholar 

  61. Laragh JH. The effect of potassium chloride on hyponatremia. J Clin Invest 1954; 33: 807–18

    Article  PubMed  CAS  Google Scholar 

  62. Fraser CL, Arieff AI. Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am J Med 1997; 102: 67–77

    Article  PubMed  CAS  Google Scholar 

  63. Thompson JA, Wolff AJ. Hyponatremic encephalopathy in a marathon runner [abstract]. Chest 2003; 124: 313S

    Google Scholar 

  64. Verbalis JG. Adaptation to acute and chronic hyponatremia: implications for symptomatology, diagnosis, and therapy. Semin Nephrol 1998; 18: 3–19

    PubMed  CAS  Google Scholar 

  65. Ayus JC, Wheeler JM, Arieff AI. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 1992; 117: 891–7

    PubMed  CAS  Google Scholar 

  66. Namias B, Soupart A, Kornreich A, et al. In human patients, vascular water retention during DDAVP-related hyponatremia occurs mainly in the plasma volume and not in the erythrocyte. J Lab Clin Med 1996; 128: 612–7

    Article  PubMed  CAS  Google Scholar 

  67. Stormont JM, Waterhouse C. The genesis of hyponatremia associated with marked overhydration and water intoxication. Circulation 1961; 24: 191–203

    Article  Google Scholar 

  68. Thaler SM, Teitelbaum I, Berl T. ‘Beer potomania’ in non-beer drinkers: effect of low dietary solute intake. Am J Kidney Dis 1998; 31: 1028–31

    Article  PubMed  CAS  Google Scholar 

  69. Davis DP, Videen JS, Marino A, et al. Exercise-associated hyponatremia in marathon runners: a two-year experience. J Emerg Med 2001; 21: 47–57

    Article  PubMed  CAS  Google Scholar 

  70. Zelingher J, Putterman C, Ilan Y, et al. Case series: hyponatremia associated with moderate exercise. Am J Med Sci 1996; 311: 86–91

    Article  PubMed  CAS  Google Scholar 

  71. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 1993; 73: 1–78

    PubMed  CAS  Google Scholar 

  72. Young M, Sciurba F, Rinaldo J. Delirium and pulmonary edema after completing a marathon. Am Rev Respir Dis 1987; 136: 737–9

    Article  PubMed  CAS  Google Scholar 

  73. Finkel KW. Water intoxication presenting as a suspected contaminated urine sample for drug testing. South Med J 2004; 97: 611–3

    Article  PubMed  Google Scholar 

  74. Scheuren A, Jurgensen JS, Kruger A, et al. Extreme hyponatremia of 87 mmol/l without neurologic complications in a severely hypovolemic patient. Am J Med 2000; 109: 679–81

    Article  PubMed  CAS  Google Scholar 

  75. Gross P, Reimann D, Henschkowski J, et al. Treatment of severe hyponatremia: conventional and novel aspects. J Am Soc Nephrol 2001; 12 Suppl. 17: S10–4

    Google Scholar 

  76. Han DS, Cho BS. Therapeutic approach to hyponatremia. Nephron 2002; 92 Suppl. 1: 9–13

    Article  PubMed  Google Scholar 

  77. Kumar S, Berl T. Sodium. Lancet 1998; 352: 220–8

    Article  CAS  Google Scholar 

  78. Smith DM, McKenna K, Thompson CJ. Hyponatraemia. Clin Endocrinol (Oxf) 2000; 52: 667–78

    Article  CAS  Google Scholar 

  79. Yeates KE, Singer M, Morton AR. Salt and water: a simple approach to hyponatremia. CMAJ 2004; 170: 365–9

    PubMed  Google Scholar 

  80. Ayus JC, Arieff AI. Pathogenesis and prevention of hyponatremic encephalopathy. Endocrinol Metab Clin North Am 1993; 22: 425–46

    PubMed  CAS  Google Scholar 

  81. Dodge PR, Crawford JD, Probst TH. Studies in experimental water intoxication. Arch Neurol 1960; 3: 513–29

    Article  PubMed  CAS  Google Scholar 

  82. Helwig FC, Schutz CB, Curry DE. Water intoxication: report of a fatal human case, with clinical, pathologic and experimental studies. JAMA 1935; 104: 1569–75

    Article  Google Scholar 

  83. Wasterlain CG, Posner JB. Cerebral edema in water intoxication: I. clinical and chemical observations. Arch Neurol 1968; 19: 71–8

    Article  PubMed  CAS  Google Scholar 

  84. Gullans SR, Verbalis JG. Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu Rev Med 1993; 44: 289–301

    Article  PubMed  CAS  Google Scholar 

  85. Massieu L, Montiel T, Robles G, et al. Brain amino acids during hyponatremia in vivo: clinical observations and experimental studies. Neurochem Res 2004; 29: 73–81

    Article  PubMed  CAS  Google Scholar 

  86. Pasantes-Morales H, Franco R, Ordaz B, et al. Mechanisms counteracting swelling in brain cells during hyponatremia. Arch Med Res 2002; 33: 237–44

    Article  PubMed  CAS  Google Scholar 

  87. Sterns RH, Baer J, Ebersol S, et al. Organic osmolytes in acute hyponatremia. Am J Physiol 1993; 264: F833–6

    Google Scholar 

  88. Verbalis JG, Drutarosky MD. Adaptation to chronic hypoosmolality in rats. Kidney Int 1988; 34: 351–60

    Article  PubMed  CAS  Google Scholar 

  89. Oztas B, Kocak H, Oner P, et al. Sex-dependent changes in blood-brain barrier permeability and brain NA(+),K(+) ATPase activity in rats following acute water intoxication. J Neurosci Res 2000; 62: 750–3

    Article  PubMed  CAS  Google Scholar 

  90. Silver SM, Schroeder BM, Bernstein P, et al. Brain adaptation to acute hyponatremia in young rats. Am J Physiol 1999; 276: R1595–9

    Google Scholar 

  91. Andersen LJ, Jensen TU, Bestle MH, et al. Gastrointestinal osmoreceptors and renal sodium excretion in humans. Am J Physiol Regul Integr Comp Physiol 2000; 278: R287–94

    Google Scholar 

  92. Andersen LJ, Jensen TU, Bestle MH, et al. Isotonic and hypertonic sodium loading in supine humans. Acta Physiol Scand 1999; 166: 23–30

    Article  PubMed  CAS  Google Scholar 

  93. Johansen LB, Bie P, Warberg J, et al. Hemodilution, central blood volume, and renal responses after an isotonic saline infusion in humans. Am J Physiol 1997; 272: R549–56

    Google Scholar 

  94. Lobo DN, Simpson JA, Stanga Z, et al. The effect of an oral glucose load on sodium and water excretion after rapid intravenous infusion of 0.9% (w/v) saline. Clin Nutr 2003; 22: 255–9

    Article  PubMed  CAS  Google Scholar 

  95. Robertson HT, Pellegrino R, Pini D, et al. Exercise response after rapid intravenous infusion of saline in healthy humans. J Appl Physiol 2004; 97: 697–703

    Article  PubMed  Google Scholar 

  96. Watson PE, Watson ID, Batt RD. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr 1980; 33: 27–39

    PubMed  CAS  Google Scholar 

  97. Almond CS, Fortescue EB, Shin AY, et al. Risk factors for hyponatremia among runners in the Boston Marathon. N Engl J Med 2005; 352: 1550–6

    Article  PubMed  CAS  Google Scholar 

  98. Stuempfle KJ, Lehmann DR, Case HS, et al. Hyponatremia in a cold weather ultraendurance race. Alaska Med 2002; 44: 51–5

    PubMed  Google Scholar 

  99. Glace BW, Murphy CA, McHugh MP. Food intake and electrolyte status of ultramarathoners competing in extreme heat. J Am Coll Nutr 2002; 21: 553–9

    PubMed  Google Scholar 

  100. Glace BW, Murphy CA, McHugh MP. Food and fluid intake and disturbances in gastrointestinal and mental function during an ultramarathon. Int J Sport Nutr 2002; 12: 414–27

    Google Scholar 

  101. Stuempfle KJ, Lehmann DR, Case HS, et al. Change in serum sodium concentration during a cold weather endurance race. Clin J Sport Med 2003; 3: 171–5

    Article  Google Scholar 

  102. Pivarnik JM, Leeds EM, Wilkerson JE. Effects of endurance exercise on metabolic water production and plasma volume. J Appl Physiol 1984; 56: 613–8

    PubMed  CAS  Google Scholar 

  103. Pastene J, Germain M, Allevard AM, et al. Water balance during and after marathon running. Eur J Appl Physiol Occup Physiol 1996; 73: 49–55

    Article  PubMed  CAS  Google Scholar 

  104. Olsson KE, Saltin B. Variation in total body water with muscle glycogen changes in man. Acta Physiol Scand 1970; 80: 11–8

    Article  PubMed  CAS  Google Scholar 

  105. Sherman WM, Plyley MJ, Sharp RL, et al. Muscle glycogen storage and its relationship with water. Int J Sports Med 1982; 3: 22–4

    Article  PubMed  CAS  Google Scholar 

  106. MacKay EM, Bergman HC. The relation between glycogen and water storage in the liver. J Biol Chem 1932; 96: 373–80

    CAS  Google Scholar 

  107. Speedy DB, Noakes TD, Rogers IR, et al. Hyponatremia in ultradistance triathletes. Med Sci Sports Exerc 1999; 31: 809–15

    Article  PubMed  CAS  Google Scholar 

  108. Speedy DB, Campbell R, Mulligan G, et al. Weight changes and serum sodium concentrations after an ultradistance multisport triathlon. Clin J Sport Med 1997; 7: 100–3

    Article  PubMed  CAS  Google Scholar 

  109. Speedy DB, Faris JG, Hamlin M, et al. Hyponatremia and weight changes in an ultradistance triathlon. Clin J Sport Med 1997; 7: 180–4

    Article  PubMed  CAS  Google Scholar 

  110. Speedy DB, Noakes TD, Kimber NE, et al. Fluid balance during and after an ironman triathlon. Clin J Sport Med 2001; 11: 44–50

    Article  PubMed  CAS  Google Scholar 

  111. Sharwood K, Collins M, Goedecke J, et al. Weight changes, sodium levels, and performance in the South African ironman triathlon. Clin J Sport Med 2002; 12: 391–9

    Article  PubMed  Google Scholar 

  112. Costill DL. Sweating: its composition and effects on body fluids. Ann N Y Acad Sci 1977; 301: 160–74

    Article  PubMed  CAS  Google Scholar 

  113. Dill DB, Horvath SM, Van Beaumont W, et al. Sweat electrolytes in desert walks. J Appl Physiol 1967; 23: 746–51

    PubMed  CAS  Google Scholar 

  114. Mao IF, Chen ML, Ko YC. Electrolyte loss in sweat and iodine deficiency in a hot environment. Arch Environ Health 2001; 56: 271–7

    Article  PubMed  CAS  Google Scholar 

  115. Shirreffs SM, Maughan RJ. Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content. J Appl Physiol 1997; 82: 336–41

    PubMed  CAS  Google Scholar 

  116. Allan JR, Wilson CG. Influence of acclimatization on sweat sodium concentration. J Appl Physiol 1971; 30: 708–12

    PubMed  CAS  Google Scholar 

  117. Ogawa T, Asayama M, Miyagawa T. Effects of sweat gland training by repeated local heating. Jpn J Physiol 1982; 32: 971–81

    Article  PubMed  CAS  Google Scholar 

  118. Hori S. Adaptation to heat. Jpn J Physiol 1995; 45: 921–46

    Article  PubMed  CAS  Google Scholar 

  119. Kirby CR, Convertino VA. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation. J Appl Physiol 1986; 61: 967–70

    PubMed  CAS  Google Scholar 

  120. Smiles KA, Robinson S. Sodium ion conservation during acclimatization of men to work in the heat. J Appl Physiol 1971; 31: 63–9

    PubMed  CAS  Google Scholar 

  121. Takamata A, Yoshida T, Nishida N, et al. Relationship of osmotic inhibition in thermoregulatory responses and sweat sodium concentration in humans. Am J Physiol Regul Integr Comp Physiol 2001; 280: R623–9

    Google Scholar 

  122. Chumlea WC, Guo SS, Zeller CM, et al. Total body water reference values and prediction equations for adults. Kidney Int 2001; 59: 2250–8

    PubMed  CAS  Google Scholar 

  123. Speedy DB, Noakes TD, Rogers IR, et al. A prospective study of exercise-associated hyponatremia in two ultradistance triathletes. Clin J Sport Med 2000; 10: 136–41

    Article  PubMed  CAS  Google Scholar 

  124. Galun E, Tur-Kaspa I, Assia E, et al. Hyponatremia induced by exercise: a 24-hour endurance march study. Miner Electrolyte Metab 1991; 17: 315–20

    PubMed  CAS  Google Scholar 

  125. Noakes TD, Goodwin N, Rayner BL, et al. Water intoxication: a possible complication during endurance exercise. Med Sci Sports Exerc 1985; 17: 370–5

    PubMed  CAS  Google Scholar 

  126. Wright JD, Wang CY, Kennedy-Stephenson J, et al. Dietary intake of ten key nutrients for public health, United States: 1999–2000. Hyattsville (MD): US Department of Health and Human Services, CDC, National Center for Health Statistics, 2003

    Google Scholar 

  127. Gastmann U, Dimeo F, Huonker M, et al. Ultra-triathlon-related blood-chemical and endocrinological responses in nine athletes. J Sports Med Phys Fitness 1998; 38: 18–23

    PubMed  CAS  Google Scholar 

  128. Smith HR, Dhatt GS, Melia WM, et al. Cystic fibrosis presenting as hyponatraemic heat exhaustion. BMJ 1995; 310: 579–80

    Article  PubMed  CAS  Google Scholar 

  129. Bergeron MF. Heat cramps: fluid and electrolyte challenges during tennis in the heat. J Sci Med Sport 2003; 6: 19–27

    Article  PubMed  CAS  Google Scholar 

  130. Pugh LG, Corbett JL, Johnson RH. Rectal temperatures, weight losses, and sweat rates in marathon running. J Appl Physiol 1967; 23: 347–52

    PubMed  CAS  Google Scholar 

  131. Dennis SC, Noakes TD, Hawley JA. Nutritional strategies to minimize fatigue during prolonged exercise: fluid, electrolyte and energy replacement. J Sports Sci 1997; 15: 305–13

    Article  PubMed  CAS  Google Scholar 

  132. Gisolfi CV, Duchman SM. Guidelines for optimal replacement beverages for different athletic events. Med Sci Sports Exerc 1992; 24: 679–87

    PubMed  CAS  Google Scholar 

  133. Maughan RJ, Shirreffs SM. Recovery from prolonged exercise: restoration of water and electrolyte balance. J Sports Sci 1997; 15: 297–303

    Article  PubMed  CAS  Google Scholar 

  134. Goldman MB, Nash M, Blake L, et al. Do electrolyte-containing beverages improve water imbalance in hyponatremic schizophrenics? J Clin Psychiatry 1994; 55: 151–3

    PubMed  CAS  Google Scholar 

  135. Berl T. Treating hyponatremia: what is all the controversy about? Ann Intern Med 1990; 113: 417–9

    PubMed  CAS  Google Scholar 

  136. Moritz ML, Ayus JC. The pathophysiology and treatment of hyponatraemic encephalopathy: an update. Nephrol Dial Transplant 2003; 18: 2486–91

    Article  PubMed  Google Scholar 

  137. Joyce SM, Potter R. Beer potomania: an unusual cause of symptomatic hyponatremia. Ann Emerg Med 1986; 15: 745–7

    Article  PubMed  CAS  Google Scholar 

  138. Lien YH, Shapiro JI, Chan L. Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia: implications for the pathogenesis of central pontine myelinolysis. J Clin Invest 1991; 88: 303–9

    Article  PubMed  CAS  Google Scholar 

  139. Ayus JC, Krothapalli RK, Armstrong DL, et al. Symptomatic hyponatremia in rats: effect of treatment on mortality and brain lesions. Am J Physiol 1989; 257: F18–22

    Google Scholar 

  140. Verbalis JG, Gullans SR. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res 1991; 567: 274–82

    Article  PubMed  CAS  Google Scholar 

  141. Worthley LI, Thomas PD. Treatment of hyponatraemic seizures with intravenous 29.2% saline. BMJ (Clin Res Ed) 1986; 292: 168–70

    Article  CAS  Google Scholar 

  142. Ayus JC, Krothapalli RK, Arieff AI. Treatment of symptomatic hyponatremia and its relation to brain damage: a prospective study. N Engl J Med 1987; 317: 1190–5

    Article  PubMed  CAS  Google Scholar 

  143. Noakes TD. Hyponatremia in distance runners: fluid and sodium balance during exercise. Curr Sports Med Rep 2002; 4: 197–207

    Google Scholar 

  144. Reeves RR. Worsening of hyponatremia with electrolyte-containing beverage. Am J Psychiatry 2004; 161: 374–5

    Article  PubMed  Google Scholar 

  145. Vermont 100 mile endurance run: medical checks [online]. Not reported, 2004. Available from URL: http://www.vermont100.com/medical_checks.html [Accessed 2004 Sep 8]

  146. Schingler R. Medical and other risk factors [online]. June 26, 2004, 2004. Available from URL: http://www.ws100.com/pguide.htm#vii [Accessed 2004 Sep 8]

  147. Information for runners [online], 2004. Available from URL: http://www.runarkansas.com/AT100Info_Information.htm [Accessed 2005 Jan 31]

  148. Medinger J. Training for the Western States 100 [online]. 2004 Jun 26. Available from URL: http://www.ws100.com/pguide.htm#nausea [Accessed 2004 Sep 8]

  149. Born S. Electrolyte Replenishment [online]. 2004 Jul. Available from URL: http://www.e-caps.com/knowledge/index.cfm?.template = fuelingbook&template2 = electrolyte2&sub = fueling%20handbook&div = Supplement/Fueling%20Guides&cat = Electrolyte%20Replacement [Accessed 2004 Sep 8]

  150. Verbalis JG. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab 2003; 17: 471–503

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was self-funded. The author declares that there are no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise B. Weschler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weschler, L.B. Exercise-Associated Hyponatraemia. Sports Med 35, 899–922 (2005). https://doi.org/10.2165/00007256-200535100-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200535100-00005

Keywords

Navigation