Skip to main content
Log in

A Nonlinear Dynamic Approach for Evaluating Postural Control

New Directions for the Management of Sport-Related Cerebral Concussion

Sports Medicine Aims and scope Submit manuscript

Abstract

Recent research suggests that traditional biomechanical models of postural stability do not fully characterise the nonlinear properties of postural control. In sports medicine, this limitation is manifest in the postural steadiness assessment approach, which may not be sufficient for detecting the presence of subtle physiological change after injury. The limitation is especially relevant given that return-to-play decisions are being made based on assessment results. This update first reviews the theoretical foundation and limitations of the traditional postural stability paradigm. It then offers, using the clinical example of athletes recovering from cerebral concussion, an alternative theoretical proposition for measuring changes in postural control by applying a nonlinear dynamic measure known as ‘approximate entropy’. Approximate entropy shows promise as a valuable means of detecting previously unrecognised, subtle physiological changes after concussion. It is recommended as an important supplemental assessment tool for determining an athlete’s readiness to resume competitive activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Fig. 2

References

  1. Palmieri RM, Ingersoll CD, Stone MB, et al. Center-of-pressure parameters used in the assessment of postural control. J Sport Rehabil 2002; 11: 51–66

    Google Scholar 

  2. Guskiewicz K. Balance and mild head injury in athletes. Orthop Phys Ther Clin N Am 2002; 11 (1): 143–157

    Google Scholar 

  3. Romberg M. Manual of nervous diseases of man. London: Sydenham Society, 1853: 395–401

    Google Scholar 

  4. Riemann BL, Guskiewicz K. Effects of mild head injury on postural stability as measured through clinical balance testing. J Athl Train 2000; 35 (1): 19–25

    PubMed  CAS  Google Scholar 

  5. Guskiewicz KM, Ross SE, Marshall SM. Postural stability and neuropsychological deficits after concussion in collegiate athletes. J Athl Train 2001; 36 (3): 263–273

    PubMed  Google Scholar 

  6. Ingersoll CD, Armstrong CW. The effects of closed-head injury on postural sway. Med Sci Sports Exerc 1992; 24 (7): 739–743

    PubMed  CAS  Google Scholar 

  7. Duarte M, Zatsiorsky VM. On the fractal properties of natural human standing. Neurosci Lett 2000; 283: 173–176

    Article  PubMed  CAS  Google Scholar 

  8. Gagey P-M, Martinerie J, Pezard L, et al. Balance in static conditions is controlled by a non-linear dynamic system. Ann Otolaryngol Chir Cervicofac 1998; 115: 161–168

    PubMed  CAS  Google Scholar 

  9. Myklebust JB, Prieto TE, Myklebust BM. Evaluation of nonolinear dynamics in postural steadiness time series. Ann Biomed Eng 1995; 23: 711–719

    Article  PubMed  CAS  Google Scholar 

  10. Blaszczyk JW, Klonowski W. Postural stability and fractal dynamics. Acta Neurobiol Exp (Wars) 2001; 61: 105–112

    CAS  Google Scholar 

  11. Cavanaugh JT, Mercer VS, Guskiewicz K. Response stability estimates for the Sensory Organization Test: equilibrium scores and approximate entropy values in healthy young adults. Gait Posture 2004; 20 Suppl. 1: S55

    Google Scholar 

  12. Cavanaugh JT, Mercer VS, Guskiewicz K. Effect of a secondary cognitive task on the temporal structure of postural control: implications for the dual task paradigm. Gait Posture 2004; 20 Suppl. 1: S54

    Article  Google Scholar 

  13. Bodfish JW, Parker DE, Lewis MH, et al. Stereotypy and motor control: differences in the postural stability dynamics of persons with stereotyped and dyskinetic movement disorders. Am J Ment Retard 2001; 106 (2): 123–134

    Article  PubMed  CAS  Google Scholar 

  14. Newell K. Degress of freedom and the development of postural center of pressure profiles. In: Newell K, Molenaar P, editors. Applications of non-linear dynamics to developmental process modeling. Mahwah (NJ): Lawrence Erlbaum Associates, 1998: 80–81

    Google Scholar 

  15. Cavanaugh JT, Guskiewicz K, Giuliani C, et al. Detecting altered postural control after cerebral concussion in athletes without postural instability. Br J Sports Med. In press

  16. Shumway-Cook A, Woollacott M. Motor control: theory and practical applications. 1st ed. Baltimore (MD): Williams & Wilkins, 1995

    Google Scholar 

  17. Le Veau BF. Biomechanics of human motion. 3rd ed. Philadelphia (PA): WB Saunders, 1992

    Google Scholar 

  18. Goldie PA, Bach TM, Evans OM. Force platform measures for evaluating postural control: reliability and validity. Arch Phys Med Rehabil 1989; 70: 510–517

    PubMed  CAS  Google Scholar 

  19. Schenkman M. Interrelationship of neurological and mechanical factors in balance control. In: Duncan PW, editor. Proceedings of the APT A Symposium on Balance. Nashville (TN): APTA, 1989: 29–41

    Google Scholar 

  20. Bernstein NA. Coordination and regulation of movements. New York: Pergamon Press Inc, 1967

    Google Scholar 

  21. Onaral B, Cammarota JP. Complexity, scaling, and fractals in biomedical signals. In: Bronzino JD, editor. The biomedical engineering handbook. New York: CRC Press Inc., 1995: 933–944

    Google Scholar 

  22. Stergiou N, Buzzi UH, Kurz MJ, et al. Nonlinear tools in human movement. In: Stergiou N, editor. Innovative analyses of human movement. Champaign (IL): Human Kinetics, 2004

    Google Scholar 

  23. Nashner LM. Sensory, neuromuscular, and bio mechanical contributions to human balance. In: Duncan PW, editor. Proceedings of the APT A Symposium on Balance. Nashville (TN): APTA, 1989: 5–12

    Google Scholar 

  24. Nicholas SC, Doxey-Gasway DD, Paloski WH. A link-segment model of upright human posture for analysis of head-trunk coordination. J Vestib Res 1998; 8 (3): 187–200

    Article  PubMed  CAS  Google Scholar 

  25. Winter DA, Patla AE, Frank JS. Assessment of balance control in humans. Med Prog Technol 1990; 16 (1–2): 31–51

    PubMed  CAS  Google Scholar 

  26. Nashner LM. A model describing vestibular detection of body sway motion. Acta Otolaryngol 1971; 72: 429–436

    Article  PubMed  CAS  Google Scholar 

  27. Sasaki O, Gagey P-M, Ouaknine AM,et al. Non-linear analysis of orthostatic posture in patients with vertigo or balance disorders. Neurosci Res 2001; 41: 185–192

    Article  PubMed  CAS  Google Scholar 

  28. Woollacott MH, Shumway-Cook A, Nashner LM. Aging and posture control: changes in sensory organization and muscular coordination. Int J Aging Hum Dev 1986; 23 (2): 97–114

    Article  PubMed  CAS  Google Scholar 

  29. Kuo AD, Speers RA, Peterka RJ, et al. Effect of altered sensory conditions on multivariate descriptors of human postural sway. Exp Brain Res 1998; 122: 185–195

    Article  PubMed  CAS  Google Scholar 

  30. Speers RA, Kuo AD, Horak F. Contributions of altered sensation and feedback responses to changes in coordination of postural control due to aging. Gait Posture 2002; 16: 20–30

    Article  PubMed  CAS  Google Scholar 

  31. Slobounov SM, Newell KM. Postural dynamics in upright and inverted stances. J Appl Biomech 1996; 12: 185–196

    Google Scholar 

  32. Riccio GE, Stoffregen TA. Affordances as constraints on control of stance. Hum Mov Sci 1988; 7: 265–300

    Article  Google Scholar 

  33. Lipsitz LA, Goldberger AL. Loss of’ complexity’ and aging: potential applications of fractals and chaos theory to senescence. JAMA 1992; 267 (13): 1806–1809

    Article  PubMed  CAS  Google Scholar 

  34. Nashner LM. Strategies for organization of human posture. In: Igarashi M, Black O, editors. Vestibular and visual control on posture and locomotor equilibrium. 7th International Symposium, International Society Posturography; 1983; Houston (TX). Basel: Karger, 1985: 1–8

    Google Scholar 

  35. Hasan SS, Robin DW, Shiavi RG. Drugs and postural sway. IEEE Eng in Med Biol Mag 1992; 11 (4): 35–41

    Article  Google Scholar 

  36. Rogers MM, Cavanagh PR. Glossary of bio mechanical terms, concepts, and units. Phys Ther 1984; 64 (12): 23–39

    Google Scholar 

  37. Patla A, Winter DA, Frank JS, et al. Identification of age-related changes in the balance control system. In: Duncan PW, editor. Proceedings of the American Physical Therapy Association Symposium on Balance; 1989 Jun 13–15; Nashville. Nashville (TN): APTA, 1989: 43–55

  38. Prieto TE, Myklebust JB, Myklebust BM. Characterization and modeling of postural steadiness in the elderly: a review. IEEE Trans Rehabil Eng 1993; 1 (1): 26–34

    Article  Google Scholar 

  39. Rocchi L, Chiari L, Cappello A. Feature selection of stabilometric parameters based on principal component analysis. Med Biol Eng Comput 2004 Jan; 42 (1): 71–79

    Article  PubMed  CAS  Google Scholar 

  40. Chiari L, Bertani A, Cappello A. Classification of visual strategies in human postural control by stochastic parameters. Hum Mov Sci 2000; 19: 817–842

    Article  Google Scholar 

  41. Messier SP, Royer TD, Craven TE, et al. Long-term exercise and its effect on balance in older, osteoarthritic adults: results from the Fitness, Arthritis, and Seniors Trial (FAST). J Am Geriatr Soc 2000; 48 (2): 131–138

    PubMed  CAS  Google Scholar 

  42. Cornwall MW, Murrell P. Postural sway following inversion sprain of the ankle. J Am Podiatr Med Assoc 1991; 81: 243–247

    PubMed  CAS  Google Scholar 

  43. Hufschmidt A, Dichgans J, Mauritz KH, et al. Some methods and parameters of body sway quantification and their neurological applications. Arch Psychiatr Nervenkr 1980; 228: 135–150

    Article  PubMed  CAS  Google Scholar 

  44. Rocchi L, Chiari L, Horak F. Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2002; 73 (3): 267–274

    Article  PubMed  CAS  Google Scholar 

  45. Geurts ACH, Ribbers GM, Knoop JA, et al. Identification of static and dynamic postural instability following traumatic brain injury. Arch Phys Med Rehabil 1996; 77: 639–644

    Article  PubMed  CAS  Google Scholar 

  46. Foudriat BA, Di Fabio RP, Anderson JH. Sensory organization of balance responses in children 3–6 years of age: a normative study with diagnostic implications. Int J Pediatr Otorhinolaryngol 1993; 27 (3): 255–271

    Article  PubMed  CAS  Google Scholar 

  47. Usui N, Maekawa K, Hirasawa Y. Development of the upright postural sway of children. Dev Med Child Neurol 1995; 37 (11): 985–996

    Article  PubMed  CAS  Google Scholar 

  48. Teasdale N, Stelmach GE, Breunig A. Postural sway characteristics of the elderly under normal and altered visual and support surface conditions. J Gerontol 1991; 46 (6): B238–B244

    Article  PubMed  CAS  Google Scholar 

  49. Paloski WH, Black FO, Reschke MF, et al. Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 1993; 14 (1): 9–17

    PubMed  CAS  Google Scholar 

  50. Collins JJ, De Luca CJ, Burrows A, et al. Age-related changes in open-loop and closed-loop postural control mechanisms. Exp Brain Res 1995; 104: 480–492

    Article  PubMed  CAS  Google Scholar 

  51. Lajoie Y, Teasdale N, Bard C, et al. Attentional demands for static and dynamic equilibrium. Exp Brain Res 1993; 97 (1): 139–144

    Article  PubMed  CAS  Google Scholar 

  52. Riley MA, Wong S, Mitra S, et al. Common effects of touch and vision on postural parameters. Exp Brain Res 1997; 117: 165–170

    Article  PubMed  CAS  Google Scholar 

  53. Sabatini AM. Analysis of postural sway using entropy measures of signal complexity. Med Biol Eng Comput 2000; 38: 617–624

    Article  PubMed  CAS  Google Scholar 

  54. Winter DA. Sagittal plane balance and posture in human walking. IEEE Eng Med Biol Mag 1987; 9: 8–11

    Article  Google Scholar 

  55. Karlsson A, Frykberg G. Correlations between force plate measures for assessment of balance. Clin Biomech 2000; 15: 365–369

    Article  CAS  Google Scholar 

  56. Baloh RW, Jacobson KM, Enrietto JA, et al. Balance disorders in older persons: quantification with posturography. Otolaryngol Head Neck Surg 1998; 119: 89–92

    Article  PubMed  CAS  Google Scholar 

  57. Di Fabio RP. Sensitivity and specificity of platform posturography for identifying patients with vestibular function. Phys Ther 1995; 75 (4): 290–305

    Google Scholar 

  58. Baloh RW, Fife TD, Zwerling L, et al. Comparison of static and dynamic posturography in young and older normal people. J Am Geriatr Soc 1994; 42 (4): 405–412

    PubMed  CAS  Google Scholar 

  59. Glass L, Mackey MC. From clocks to chaos: the rhythms of life. Princeton (NJ): Princeton University Press, 1988

    Google Scholar 

  60. Carroll JP, Freedman W. Nonstationary properties of postural sway. J Biomech 1993; 26 (4/5): 409–416

    Article  PubMed  CAS  Google Scholar 

  61. Collins JJ, De Luca CJ. Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 1993; 95 (2): 308–318

    Article  PubMed  CAS  Google Scholar 

  62. Oie KS, Kiemel T, Jeka J. Human multisensory fusion of vision and touch: detecting non-linearity with small changes in the sensory environment. Neurosci Lett 2001; 315: 113–116

    Article  PubMed  CAS  Google Scholar 

  63. Thurner S, Mittermaier C, Hanel R, et al. Scaling-violation phenomena and fractality in the human posture control system. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 2000; 62 (3): 4018–4024

    Article  PubMed  CAS  Google Scholar 

  64. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 1991; 88 (6): 2297–2301

    Article  PubMed  CAS  Google Scholar 

  65. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D 1983; 9: 189–208

    Article  Google Scholar 

  66. Vaillancourt DE, Slifkin AB, Newell KM. Regularity of force tremor in Parkinson’s disease. Clin Neurophysiol Sep 2001; 11 (9): 1594–1603

    Article  Google Scholar 

  67. Pincus SM. Quantifying complexity and regularity of neurobiological systems. Methods Neurosci 1995; 28: 336–363

    Article  CAS  Google Scholar 

  68. Slifkin AB, Newell KM. Variability and noise in continuous force production. J Mot Behav 2000 Jun; 32 (2): 141–150

    Article  PubMed  CAS  Google Scholar 

  69. Yates FE. General introduction. In: Yates FE editor. Self- organizing control systems: the emergence of order. New York: Plenum Press, 1987: 1–14

    Google Scholar 

  70. Pincus SM. Greater signal regularity may indicate increased system isolation. Math Biosci 1994; 122: 161–181

    Article  PubMed  CAS  Google Scholar 

  71. Pincus SM, Keefe DL. Quantification of hormone pulsatility via an approximate entropy algorithm. Am J Physiol 1992; 262 (5 Pt 1): E741–E754

    PubMed  CAS  Google Scholar 

  72. Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Am J Physiol 1994; 266 (4 Pt 2): H1643–H1656

    PubMed  CAS  Google Scholar 

  73. Newell KM, van Emmerik REA, Sprague RL. Sterotypy and variability. In: Newell KM, Corcos DM, editors. Variability and motor control. Champaign (IL): Human Kinetics Publishers, 1993: 475–496

    Google Scholar 

  74. Harbourne RT, Stergiou N. Nonlinear analysis of the development of sitting postural control. Dev Psychobiol 2003; 42: 368–377

    Article  PubMed  Google Scholar 

  75. Thurman DJ, Branche CM, Sniezek JE. The epidemiology of sports-related traumatic brain injuries in the United States: recent developments. J Head Trauma Rehabil 1998; 13 (2): 1–8

    Article  PubMed  CAS  Google Scholar 

  76. Guskiewicz KM, Weaver NL, Padua DA, et al. Epidemiology of concussion in collegiate and high school football players. Am J Sports Med 2000; 28 (5): 643–650

    PubMed  CAS  Google Scholar 

  77. Guskiewicz KM, McCrea M, Marshall SW, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 2003 Nov 19; 290 (19): 2549–2555

    Article  PubMed  CAS  Google Scholar 

  78. Salcido R, Costich JF. Recurrent traumatic brain injury. Brain Inj 1992; 6 (3): 293–298

    Article  PubMed  CAS  Google Scholar 

  79. Gronwall D, Wrightson P. Cumulative effect of concussion. Lancet 1975; II (7943): 995–997

    Article  Google Scholar 

  80. Saunders RL, Harbaugh RE. The second impact in catastrophic contact-sports head trauma. JAMA 1984; 252 (4): 538–539

    Article  PubMed  CAS  Google Scholar 

  81. McCrory PR, Berkovic SF. Concussion: the history of clinical and pathophysiological concepts and misconceptions. Neurology 2001; 57 (12): 2283–2289

    Article  PubMed  CAS  Google Scholar 

  82. Shaw N. The neurophysiology of concussion. Prog Neurobiol 2002; 67 (4): 281–344

    Article  PubMed  CAS  Google Scholar 

  83. Mallinson AI, Longridge NS. Dizziness from whiplash and head injury: differences between whiplash and head injury. Am J Otol 1998; 19 (6): 814–818

    PubMed  CAS  Google Scholar 

  84. Wojtys EM, Hovda D, Landry G, et al. Current concepts: concussion in sports. Am J Sports Med 1999; 27 (5): 676–687

    PubMed  CAS  Google Scholar 

  85. McCrory P, Johnston KM, Mohtadi NG, et al. Evidence-based review of sport-related concussion: basic science. Clin J Sport Med 2001; 11 (3): 160–165

    Article  PubMed  CAS  Google Scholar 

  86. Salenius S, Hari R. Synchronous cortical oscillatory activity during motor action. Curr Opin Neurobiol Dec 2003; 13 (6): 678–684

    Article  CAS  Google Scholar 

  87. Guskiewicz KM, Perrin DH, Gansneder BM. Effect of mild head injury on postural stability in athletes. J Athl Train 1996; 31 (4): 300–306

    PubMed  CAS  Google Scholar 

  88. Guskiewicz KM, Riemann BL, Perrin DH, et al. Alternative approaches to the assessment of mild head injury in athletes. Med Sci Sports Exerc 1997; 29 (7 Suppl.): S213–S221

    PubMed  CAS  Google Scholar 

  89. Mrazik M, Ferrara MS, Peterson CL, et al. Injury severity and neuropsychological and balance outcomes of four college athletes. Brain Inj 2000; 14 (10): 921–931

    Article  PubMed  CAS  Google Scholar 

  90. Cavanaugh J, Guskiewicz K, Stergiou N. New insights into the recovery of postural control after cerebral concussion. J Orthop Sport Phys Ther 2005; 35 (1): A77–A78

    Google Scholar 

Download references

Acknowledgements

Dr Cavanaugh’s dissertation work focusing on the application of approximate entropy to the analysis of centre of pressure time series in athletes with concussion was conducted in the Sports Medicine Research Laboratory at the University of North Carolina, Chapel Hill, North Carolina, USA, under the direction of Dr Guskiewicz. The work was funded in part by grants from the Injury Prevention Research Center at the University of North Carolina at Chapel Hill, the National Center for Injury Prevention and Control (USA), the National Operating Committee on Standards in Athletic Equipment (USA), and the National Athletic Trainers’ Association Research and Education Fund (USA). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Cavanaugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavanaugh, J.T., Guskiewicz, K.M. & Stergiou, N. A Nonlinear Dynamic Approach for Evaluating Postural Control. Sports Med 35, 935–950 (2005). https://doi.org/10.2165/00007256-200535110-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200535110-00002

Keywords

Navigation