Effects of plyometric training followed by a reduced training programme on physical performance in prepubescent soccer players

J Sports Med Phys Fitness. 2001 Sep;41(3):342-8.

Abstract

Background: In adult population, stretch-shortening cycle exercise (plyometric exercise) is often used to improve leg muscle power and vertical jump performance. In children, limited information regarding this type of exercise is available. The purpose of this study was to examine the effectiveness of plyometric training and maintenance training on physical performances in prepubescent soccer players.

Methods: Twenty boys aged 12-13 years was divided in two groups (10 in each): jump group (JG) and control group (CG). JG trained 3 days/week during 10 weeks, and performed various plyometric exercises including jumping, hurdling and skipping. The subsequent reduced training period lasted 8 weeks. However, all subjects continued their soccer training. Maximal cycling power (Pmax) was calculated using a force-velocity cycling test. Jumping power was assessed by using the following tests: countermovement jump (CMJ), squat jump (SJ), drop jump (DJ), multiple 5 bounds (MB5) and repeated rebound jump for 15 seconds (RRJ15). Running velocities included: 20, 30 and 40 m (V20, V30, V40 m). Body fat percentage (BF percent) and lean leg volume were estimated by anthropometry.

Results: Before training, except for BF percent, all baseline anthropometric characteristics were similar between JG and CG. After the training programme, Pmax (p<0.01), CMJ (p<0.01), SJ (p<0.05), MB5 (p<0.01), RRJ15 (p<0.01) and V20 m (p<0.05), performances increased in the JG. During this period no significant performance increase was obtained in the CG. After the 8-week of reduced training, except Pmax (p<0.05) for CG, any increase was observed in both groups.

Conclusions: These results demonstrate that short-term plyometric training programmes increase athletic performances in prepubescent boys. These improvements were maintained after a period of reduced training.

MeSH terms

  • Adolescent
  • Anthropometry
  • Bicycling / physiology
  • Child
  • Humans
  • Male
  • Physical Education and Training*
  • Physical Fitness
  • Running / physiology
  • Soccer / physiology*
  • Statistics, Nonparametric