Analysis of the myoglobin gene in Tibetans living at high altitude

High Alt Med Biol. 2002 Spring;3(1):39-47. doi: 10.1089/152702902753639531.

Abstract

Myoglobin, a protein with an important role in muscle oxidative metabolism, is increased in high altitude residents. In the closely related hemoglobins, mutations cause or contribute to human disease. Furthermore, heme-containing proteins may be involved in oxygen sensing. We therefore tested the hypotheses that myoglobin allele frequencies differed in Tibetans, a long-resident human high-altitude population, compared with sea-level residents, and varied in relation to altitude among Tibetans. We obtained the sequence of exon 2 of the myoglobin gene in 146 Tibetans with greater than three generations of stable residence at altitude in rural Tibet. We compared the frequency of known polymorphic sites in this gene among Tibetans living at altitudes of 3000, 3700, and 4500 m and to allele frequencies previously obtained in 525 residents of Dallas, Texas. We also examined the association between different myoglobin genotypes and hemoglobin concentration, used as an index of myoglobin levels. The frequency of the myoglobin 79A allele was higher in the high altitude compared with the sea-level residents, but unchanged with increasing altitude among Tibetans. There was no significant deviation from Hardy-Weinberg equilibrium in any of the Tibetan altitude groups, nor was there any association between myoglobin genotype and hemoglobin concentration. Screening of exon 2 of the myoglobin gene in high altitude Tibetans does not show novel polymorphism or selection for specific myoglobin alleles as a function of altitude of residence or hypoxic challenge.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Altitude*
  • Exons
  • Female
  • Gene Frequency*
  • Genetics, Population
  • Genotype
  • Hemoglobins / analysis
  • Hemoglobins / genetics
  • Humans
  • Hypoxia / genetics
  • Male
  • Myoglobin / genetics*
  • Polymorphism, Genetic
  • Tibet

Substances

  • Hemoglobins
  • Myoglobin