Effects of intermittent hypoxic training on aerobic and anaerobic performance

Ergonomics. 2005;48(11-14):1535-46. doi: 10.1080/00140130500100959.

Abstract

The aim of the present study was to determine whether short-term intermittent hypoxic training would enhance sea level aerobic and anaerobic performance over and above that occurring with equivalent sea level training. Over a 4-week period, two groups of eight moderately trained team sports players performed 30 min of cycling exercise three times per week. One group trained in normobaric hypoxia at a simulated altitude of 2750 m (F(I)O2= 0.15), the other group trained in a laboratory under sea level conditions. Each training session consisted of ten 1-min bouts at 80% maximum workload maintained for 2 min (Wmax) during the incremental exercise test at sea level separated by 2-min active recovery at 50% Wmax. Training intensities were increased by 5% after six training sessions and by a further 5% (of original Wmax) after nine sessions. Pre-training assessments of VO(2max), power output at onset of 4 mM blood lactate accumulation (OBLA), Wmax and Wingate anaerobic performance were performed on a cycle ergometer at sea level and repeated 4-7 d following the training intervention. Following training there were significant increases (p < 0.01) in VO(2max) (7.2 vs. 8.0%), Wmax (15.5 vs. 17.8%), OBLA (11.1 vs. 11.9%), mean power (8.0 vs. 6.5%) and peak power (2.9 vs. 9.3%) in both the hypoxic and normoxic groups respectively. There were no significant differences between the increases in any of the above-mentioned performance parameters in either training environment (p > 0.05). In addition, neither haemoglobin concentration nor haematocrit were significantly changed in either group (p > 0.05). It is concluded that acute exposure of moderately trained subjects to normobaric hypoxia during a short-term training programme consisting of moderate- to high-intensity intermittent exercise has no enhanced effect on the degree of improvement in either aerobic or anaerobic performance. These data suggest that if there are any advantages to training in hypoxia for sea level performance, they would not arise from the short-term protocol employed in the present study.

MeSH terms

  • Adult
  • Altitude*
  • Anaerobic Threshold / physiology*
  • Atmosphere Exposure Chambers
  • Bicycling / physiology
  • Exercise / physiology*
  • Humans
  • Male
  • Oxygen
  • Physical Endurance / physiology
  • Physical Fitness / physiology*
  • Time Factors

Substances

  • Oxygen