Kinetic chain exercise in knee rehabilitation

Sports Med. 1991 Jun;11(6):402-13. doi: 10.2165/00007256-199111060-00005.

Abstract

Rehabilitation is recognised as a critical component in the treatment of the anterior cruciate ligament (ACL) injured athlete, and has been the subject of intense research over the past decade. As a result, sound scientific principles have been applied to this realm of sports medicine, and have improved the outcome of both surgical and nonsurgical treatment. Possibly the most intriguing of these principles is the use of the kinetic chain concept in exercise prescription following ACL reconstruction. The hip, knee, and ankle joints when taken together, comprise the lower extremity kinetic chain. Kinetic chain exercises like the squat recruit all 3 links in unison while exercises such as seated quadriceps extensions isolate one link of the chain. Biomechanical assessment with force diagrams reveals that ACL strain is reduced during kinetic chain exercise by virtue of the axial orientation of the applied load and muscular co-contraction. Additionally, kinetic chain exercise through recruitment of all hip, knee, and ankle extensors in synchrony takes advantage of specificity of training principles. More importantly, however, it is the only way to reproduce the concurrent shift of 'antagonistic' biarticular muscle groups that occurs during simultaneous hip, knee, and ankle extension. Incoordination of the concurrent shift fostered by exercising each muscle group in isolation may ultimately hamper complete recovery. Modifying present day leg press and isokinetic equipment will allow clinicians to make better use of kinetic chain exercise and allow safe isokinetic testing of the ACL reconstructed knee. Reconstruction of the ACL with a strong well placed graft to restore joint kinematics, followed by scientifically sound rehabilitation to improve dynamic control of tibial translation, will improve the outcome after ACL injury.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Anterior Cruciate Ligament Injuries*
  • Biomechanical Phenomena
  • Exercise / physiology*
  • Humans
  • Knee Injuries / rehabilitation*
  • Knee Joint / physiology*
  • Muscle Contraction