High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition

J Clin Endocrinol Metab. 1998 Dec;83(12):4220-32. doi: 10.1210/jcem.83.12.5334.

Abstract

The purposes of this investigation were to evaluate the characteristics of three consecutive menstrual cycles and to determine the frequency ofluteal phase deficiency (LPD) and anovulation in a sample of sedentary and moderately exercising, regularly menstruating women. For three consecutive menstrual cycles, subjects collected daily urine samples for analysis of FSH, estrone conjugates (E1C), pregnanediol-3-glucuronide (PdG), and creatinine (Cr). Sedentary (n=11) and exercising (n=24) groups were similar in age (27.0+/-1.3 yr), weight (60.3+/-3.1 kg), gynecological age (13.8+/-1.2 yr), and menstrual cycle length (28.3+/-0.8 days). Menstrual cycles were classified by endocrine data as ovulatory, LPD, or anovulatory. No sedentary women (0%) had inconsistent menstrual cycle classifications from cycle to cycle, but 46% of the exercising women were inconsistent. The sample prevalence of LPD in the exercising women was 48%, and the 3-month sample incidence was 79%. In the sedentary women, 90% of all menstrual cycles were ovulatory (SedOvul; n=28), whereas in the exercising women only 45% were ovulatory (ExOvul; n=30); 43% were LPD (ExLPD; n=28), and 12% were anovulatory (ExAnov; n=8). In ExLPD cycles, the follicular phase was significantly longer (17.9+/-0.7 days), and the luteal phase was significantly shorter (8.2+/-0.5 days) compared to ExOvul (14.8+/-0.9 and 12.9+/-0.3 days) and SedOvul (15.9+/-0.6 and 12.9+/-0.4 days) cycles. Luteal phase PdG excretion was lower (P < 0.001) in ExLPD (2.9+/-0.3 microg/mg Cr) and ExAnov (0.8+/-0.1 microg/mg Cr) cycles compared to SedOvul cycles (5.0+/-0.4 microg/mg Cr). ExOvul cycles also had less (P < 0.01) PdG excretion during the luteal phase (3.7+/-0.3 microg/mg Cr) than the SedOvul cycles. E1C excretion during follicular phase days 2-5 was lower (P=0.05) in ExOvul, ExLPD, and ExAnov cycles compared to SedOvul cycles and remained lower (P < 0.02) in the ExLPD and ExAnov cycles during days 6-12. The elevation in FSH during the luteal-follicular transition was lower (P < 0.007) in ExLPD (0.7+/-0.1 ng/mg Cr) cycles compared to SedOvul and ExOvul cycles (1.0+/-0.1 and 1.1+/-0.1 ng/mg Cr, respectively). Energy balance and energy availability were lower (P < 0.05) in ExAnov cycles than in other menstrual cycle categories. The blunted elevation in FSH during the luteal-follicular transition in exercising women with LPD may explain their lower follicular estradiol levels. These alterations in FSH may act in concert with disrupted LH pulsatility as a primary and proximate factor in the high frequency of luteal phase and ovulatory disturbances in regularly menstruating, exercising women.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Anovulation / etiology*
  • Energy Intake
  • Energy Metabolism / physiology
  • Estrogens / urine
  • Female
  • Follicle Stimulating Hormone / blood*
  • Follicular Phase / physiology*
  • Humans
  • Luteal Phase / physiology*
  • Menstrual Cycle / physiology
  • Nutritional Physiological Phenomena / physiology
  • Physical Education and Training
  • Progesterone / urine
  • Recreation / physiology
  • Running / physiology*

Substances

  • Estrogens
  • Progesterone
  • Follicle Stimulating Hormone