Article Text

Download PDFPDF
o2 slow component and performance in endurance sports
  1. Véronique L Billat
  1. University Lille 2, Centre de médecine du sport CCAS 75010 Paris, France

    Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

    For almost 80 years, physiological studies have attempted to explain endurance performance and to develop ways of improving it by training. Performance for a runner can be represented by the relation of his/her personal power (velocity) to time to exhaustion (time limit).1

    There are particular velocities that delineate intensity domains which are determined by oxygen uptake (V̇o2) and blood lactate response versus time.2,3 We are going to use them to define the slow phase of V̇o2 kinetics V̇o2 slow component) which only appears during intense exercise.

    A high range of work can be identified at which there is a sustained increase in blood lactate and a decrease in arterial pH with time. These responses decline back towards a baseline value. Oxygen uptake increases in a monoexponential way and stabilises at about 80% in high level marathon runners for at least an hour and a half of continuous exercise. After that time, it is possible for oxygen consumption to increase because of thermoregulatory constraints, and this increase is called the “V̇o2 drift”. This intensity of exercise corresponds to the velocity that can be sustained during a marathon and is equal to about 80% of the velocity associated with V̇o2max determined in an incremental test—that is, vV̇o2max.4 During this type of exercise both lipids and carbohydrate are used as fuel.

    At a higher intensity, the maximal lactate steady state occurs5 when the rate of appearance of blood lactate equals the rate of its disappearance. V̇o2 stabilises after three minutes at about 85% V̇o2max. This corresponds to the highest velocity that an athlete can sustain for an hour (85% vV̇o2max for a well trained …

    View Full Text