Article Text
Abstract
Background: There is a continuing debate about the performance of protective headgear in rugby union, rugby league, and Australian rules football.
Objectives: To examine the impact energy attenuation performance of foam that could be incorporated into headgear and examine the performance of prototypes of modified headgear.
Methods: Impact tests were conducted on polyethylene foams and protective headgear. Free fall drop tests with a rigid headform on to a flat rigid anvil were conducted. Resultant headform acceleration was measured. Means of the headform acceleration maxima for repeat tests were calculated.
Results: Tests on polyethylene foam indicated that an increase in thickness from 10 mm to 16 mm would improve headgear performance. These modifications were incorporated in part into two headgear models: the Albion Headpro and the Canterbury brand Body Armour honeycomb headgear. The headgear tests show that significant reductions in headform acceleration were achieved by increasing the foam density and thickness. Mean headform acceleration maxima for the 16 mm thick modified rugby headgear was about 25% of that of standard headgear for lateral impact 0.3 and 0.4 m drop heights and 27% for the centre front 0.3 m drop tests. At these impacts, the headform acceleration for the modified rugby headgear was below 200 g.
Conclusions: Significant improvements in impact energy attenuation performance are possible with small design changes. Whether these are sufficient to reduce the rate or severity of concussion in rugby and Australian rules football can only be shown by formal prospective studies on the field.
- helmets
- head injury
- football
- impact testing
- concussion