Article Text

Download PDFPDF

Heat stress does not exacerbate tennis-induced alterations in physical performance
  1. Olivier Girard,
  2. Ryan J Christian,
  3. Sébastien Racinais,
  4. Julien D Périard
  1. Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
  1. Correspondence to Dr Olivier Girard, Aspetar—Qatar Orthopaedic and Sports Medicine Hospital, Research and Education Centre, PO Box 29222, Doha, Qatar; olivier.girard{at}aspetar.com

Abstract

Objectives To assess the time course of changes in physical performance in response to match-play tennis under heat stress.

Methods Two matches consisting of 20 min of effective playing time (2×10 min segments) were played in COOL (∼102 min; ∼22°C and 70% relative humidity (RH)) and HOT (∼119 min; ∼36°C and 35% RH) environments. Repeated-sprint ability (3×15 m, 15 s rest), 15 m sprint time with a direction change (180°), vertical jump height (squat and countermovement jumps) and leg stiffness (multirebound jumps) were assessed in 12 competitive male players prematch, midmatch and postmatch, and 24 and 48 h after match completion.

Results During the repeated-sprint ability test, initial (+2.3% and +3.1%) and cumulated sprint (+1.5% and +2.8%) times increased from prematch to midmatch and postmatch, respectively (p<0.001), while the sprint decrement score did not change. Match-play tennis induced a slowing (average of both conditions: +1.1% and +1.3% at midmatch and postmatch time points; p=0.05) of 15 m sprint time with direction change. Compared with prematch, leg stiffness (−6.4% and −6.5%; p<0.001) and squat jump height (−1.5% and −2.4%; p=0.05), but not countermovement jump height (−0.7% and −1.3%; p>0.05), decreased midmatch and postmatch, respectively, regardless of the condition. Complete recovery in all physical performance markers occurred within 24 h.

Conclusions In tennis, match-related fatigue is characterised by impaired repeated-sprint ability, explosive power and leg stiffness at midmatch and postmatch, with values restored to prematch baseline 24 h into recovery. In addition, physical performance responses (match and recovery kinetics) are identical when competing in cool and hot environments.

  • Adaptations of skeletal muscle to exercise and altered neuromuscular activity
  • Biomechanics
  • Dehydration
  • Fatigue
  • Thermoregulation

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.