The prevalence of radiographic and MRI-defined patellofemoral osteoarthritis and structural pathology: a systematic review and meta-analysis

Harvi F Hart, ¹ Joshua J Stefanik, ² Narelle Wyndow, ³ Zuzana Machotka, ¹ Kay M Crossley ¹

► Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ bjsports-2017-097515).

¹La Trobe Sports and Exercise Medicine Research Centre, School of Allied Health, La Trobe University, Bundoora, Victoria, Australia ²Deparment of Physical

Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA

School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia

Correspondence to

Professor Kay M Crossley, La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, Victoria 3086, Australia; k.crossley@latrobe. edu.au

Received 9 January 2017 Revised 23 February 2017 Accepted 27 February 2017 Published Online First 27 March 2017

ABSTRACT

Background Patellofemoral osteoarthritis (PF OA) is more prevalent than previously thought and contributes to patient's suffering from knee OA. Synthesis of prevalence data can provide estimates of the burden of PF OA.

Objective This study aims to conduct a systematic review and meta-analysis on the prevalence of PF OA and structural damage based on radiography and MRI studies in different populations.

Methods We searched six electronic databases and reference lists of relevant cross-sectional and observational studies reporting the prevalence of PF OA. Two independent reviewers appraised methodological quality. Where possible, data were pooled using the following categories: radiography and MRI studies. **Results** Eighty-five studies that reported the prevalence of patellofemoral OA and structural damage were included in this systematic review. Meta-analysis revealed a high prevalence of radiographic PF OA in knee pain or symptomatic knee OA (43%), radiographic knee OA or at risk of developing OA (48%) and radiographic and symptomatic knee OA (57%) cohorts. The MRI-defined structural PF damage in knee pain or symptomatic population was 32% and 52% based on bone marrow lesion and cartilage defect, respectively. **Conclusion** One half of people with knee pain or radiographic OA have patellofemoral involvement. Prevalence of MRI findings was high in symptomatic and asymptomatic population. These pooled data and the variability found can provide evidence for future research addressing risk factors and treatments for PF OA.

INTRODUCTION

Knee osteoarthritis (OA) is a leading cause of pain and disability worldwide. The patellofemoral joint (PF) is commonly affected in symptomatic knee OA² and is a substantial source of symptoms associated with knee OA. Further to this, the PF is often affected by OA before the tibiofemoral (TF) joint and increases the risk of TF OA development and progression. The property of th

Trial registration number PROSPERO systematic

review protocol (CRD42016035649).

With a recent increase in radiography and magnetic resonance imaging (MRI) based studies focused on PF joint, the evidence on the prevalence of PF OA is expanding rapidly. A 2013 narrative literature review concluded that the prevalence of radiographic PF OA in individuals' post-ACL and/or meniscus ruptures was approximately 50%. 6 A

recent systematic review described the prevalence of radiographic PF OA in population-based and in cohorts of people with knee pain. A large number of studies have reported PF OA in different populations (eg, post-traumatic and healthy individuals), and knowledge of population-specific prevalence is relevant for clinicians and researchers. An updated review with inclusion of different study samples (eg, post-traumatic, occupation-based, high risk of OA and healthy individuals) builds considerably on the previous systematic review and extends our current knowledge of PF OA.

MRI is the modality of choice to assess structural damage in epidemiological studies to detect early and subtle features of OA (eg, abnormal cartilage morphology and bone marrow lesions) not seen on radiography.⁸ Thus, the prevalence of PF structural damage using MRI may be higher than the prevalence determined by radiography. Including radiography and MRI-based studies in community and specific study, populations provide a comprehensive evaluation of the prevalence of PF OA and PF structural damage and extends prior reviews in this area. Thus, the objective of this study was to perform a systematic review and meta-analysis with the aim to determine the prevalence of PF OA using radiographs and MRI-defined structural PF damage in a variety of study populations.

METHODS

The study protocol was developed in consultation with guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. The protocol was prospectively registered on the PROSPERO International prospective register for systematic reviews website (http://www.crd.york.ac.uk/PROSPERO) (Registration no: CRD42016035649). The reporting of this study followed the PRISMA checklist.

Literature search strategy

Using guidelines provided by the Cochrane Collaboration, a comprehensive search strategy was devised from the following electronic databases with no date restrictions: (1) MEDLINE via OVID, (2) EMBASE via OVID, (3) CINAHL via EBSCO, (4) Scopus, (5) Web of Science and (6) SPORTDiscus. The primary search strategy included search for original publications. The search strategy was deliberately simplified to ensure inclusion of all relevant papers, with all terms searched as free text and key words (where applicable): Concept 1, Patellofemoral

To cite: Hart HF, Stefanik JJ, Wyndow N, et al. Br J Sports Med 2017;**51**:1195–1208.

BMI

(Patello-femoral, PF, PFJ, knee joint); Concept 2, Osteoarthritis (OA, arthritis, degenerative arthritis, bone marrow lesion); and Concept 3, Prevalence (prevalence, morbidity, epidemiology, diagnosis, incidence). All search terms were exploded and scope notes from each database were examined for other possible terms for modification of search strategies. The MEDLINE search strategy was adapted for other databases (online supplementary file table 1). The search strategy was limited to English language and full text. All potential references were imported into Endnote X7 (Thomson Reuters, Carlsbad, California, USA) and duplicates were removed. Two reviewers (HFH, NW) reviewed all titles returned by the database searches and retrieved suitable abstracts. Where abstracts suggested that papers were potentially suitable, the full-text versions were screened and included in the review if they fulfilled the selection criteria. Reference lists of all publications considered for inclusion were hand searched recursively and citation tracking was completed using Google Scholar until no additional eligible publications were identified. A third reviewer was consulted in case of disagreements (JJS).

Selection criteria

Cross-sectional and longitudinal studies reporting the prevalence or frequency of PF OA or PF structural damage were included. No restrictions were placed on age, sex or method of recruitment. Reviews, case reports and unpublished studies, as well as non-human studies were excluded.

Assessment of methodological quality and risk of bias

Two independent reviewers (NW and ZM), who remained blind to authors, affiliations and the publishing journal, rated the methodological quality of included studies using the Critical Appraisal tool. The Critical Appraisal tool was developed to appraise prevalence and incidence-based studies and consists of eight items (maximum score possible 8). Final study ratings for each reviewer were collated and examined for discrepancies. Any inter-rater disagreement was discussed in a consensus meeting, and unresolved items were taken to a third reviewer (HFH) for consensus. Total scores were normalised to a scale ranging from 0 to 2, for each study to assign level of methodological quality. Studies were then classified as high quality (≥1.4), moderate quality (1.1–1.4) or poor quality (<1.1) based on normalised scores. On the methodological quality (<1.1) based on normalised scores.

Data management and statistical analysis

For the purposes of this systematic review, we defined prevalence as the prevalence of PF OA in community-based studies and the reported frequencies of PF OA in other populations. Data pertaining to population, sample size, sex, age, type of imaging (MRI, radiography), grading criteria, units of analysis (number of participants affected or number of knees affected) and prevalence of radiographic PF OA and MRI-defined PF structural damage (isolated PF OA/PF structural damage; combined PF OA and TF OA/PF and TF structural damage; and unclear, not clearly described whether the prevalence was isolated or combined) were independently extracted and entered into an Excel spreadsheet. If sufficient data were not reported in the published article or supplementary material provided, the corresponding author was contacted to request further data. If multiple studies presented data from one cohort, the study with the most complete data was included. PF OA and MRI-defined PF structural damage prevalence data were reported for: (1) isolated, (2) combined (PF and TF) and (3) any (isolated, combined and unclear). Meta-analysis for proportions with random effects model were performed using MedCalc for Windows, V.16.8. Heterogeneity tests were also conducted and interpreted as follows: $I^{2 \le 25\%}$, low heterogeneity; $I^{2}=25$ to $\le 50\%$, moderate heterogeneity; and $I^{2} \ge 75\%$, high heterogeneity. Data were divided into two categories based on imaging technique used: (1) radiography and (2) MRI.

Radiography studies

The Kellgren and Lawrence (KL) grading criteria¹² and Osteoarthritis Research Society International (OARSI) atlas¹³ are used to define radiographic OA in the TF compartments. There is no KL or OARSI atlas definition of PF OA based on radiographs; however, both criteria are often used to quantify the severity of radiographic OA in the PF using the skyline and/or lateral radiography views. For the purposes of this systematic review and meta-analysis, osteophytes and joint space narrowing were used to define PF OA. If prevalence for multiple radiographic OA features (eg, prevalence based on osteophytes and joint space narrowing) was reported, then prevalence based on osteophytes was chosen. Data were pooled based on the following study populations: (1) community-based (individuals randomly recruited from community), (2) knee pain/symptomatic (individuals recruited based on knee-related symptoms), (3) radiographic and symptomatic OA (individuals recruited based on symptoms and radiographic OA), (4) healthy individuals (no pain, injury or OA), (5) radiographic or high risk of OA (individuals recruited based on radiographic OA or risk of developing radiographic OA without regard to knee pain/symptoms), (6) occupational-based (individuals recruited based on their occupation/sports) and (7) post-traumatic (individuals with previous knee-related trauma, such as ACL injury or reconstruction or meniscal injury). Given that individuals recruited based on high risk of OA may or may not have had previous trauma; data from individuals with high risk of OA were not included in the post-traumatic category. The occupation-based category included different sporting and occupational activities such as long distance runners, shooters, graphic designers and monks. To determine the prevalence in individuals exposed to different activities, the data from sports and occupational activities were pooled together. Data were stratified based on intensity of activity (eg, high: soccer graphic and low: graphic designers) activities. For longitudinal studies, data from the latest time point (rather than baseline) were included. Within the eight study population categories, sensitivity analyses were conducted when >1 study reported sufficient data for pooling based on disease severity, compartment-specific OA pattern, age and sex. Disease severity was defined as mild, presence of at least mild radiographic PF OA; and definite, presence of definite radiographic PF OA (online supplementary file table 2). Compartment-specific OA pattern was defined as: (1) isolated PF OA, (2) combined PF OA and TF OA and (3) any PF OA. Age groups for sensitivity analyses were categorised as: (1) mean age: <50 years, (2) mean age: ≥ 50 years. These sensitivity analyses are presented in text for any PF OA and in supplementary material (online supplementary file table 3 for the isolated and combined TF OA and PF OA groups. Where possible, medial and lateral PF OA prevalence was described.

MRI studies

Currently, there is no accepted definition of MRI-defined PF OA. A definition was proposed by Hunter *et al*¹⁴ which included a definite osteophyte and partial or full thickness cartilage loss. However, this proposed definition of MRI-defined PF OA has not been further validated. Furthermore, most previous studies do not provide data on osteophytes to enable calculation of PF

OA prevalence using this definition. Therefore, for the purposes of this systematic reviewwe will report MRI-defined structural damage. Data were pooled based on study populations described above (except for occupational-based population) as well as general population (studies that could not be categorised into one of the categories described above). Within each study population category, data were pooled based on cartilage defect and bone marrow lesions (BML) MRI features. Authors used the following terms to define cartilage defect: cartilage abnormalities, cartilage defect, full cartilage thickness loss, cartilage pathology and cartilage lesion; and the following terms were used to define BML, marrow abnormalities, marrow lesion and bone marrow oedema. To allow data pooling where possible other scoring systems were compared with the Whole-Organ MRI Score (WORMS)¹⁵ and MRI Osteoarthritis Knee Score (MOAKS)¹⁶ based on the explanation of the scoring system provided in the paper. Data were stratified based on compartment-specific OA pattern (isolated PF OA, combined PF OA and TF OA and any PF OA). Where possible, stratified analyses were conducted based on age (mean age: <50 years, ≥ 50 years) and sex. If possible, medial and lateral PF OA prevalence was described. Most longitudinal MRI studies provided most complete data at baseline rather than at later time points (dropouts or only ORs data for later time points); thus, this review included baseline data.

RESULTS

Search strategy, methodological quality and risk of bias

The comprehensive search strategy identified 2681 titles, with the last search conducted on 25 February 2016. Following removal of duplicate publications and conference proceedings, titles of 1105 publications were evaluated. Thirteen titles were obtained from other resources (Google Scholar and hand searching). The full texts of 144 articles were retrieved, with 117 articles meeting the selection criteria. Following removal of studies with duplicate data, 85 studies (63 radiography studies, 2 17-78 24 MRI studies^{39 79–101}) were included in this systematic review (tables 1 and 2, figure 1). There was one study that reported data on radiographic PF OA and MRI-defined PF structural damage.³⁵ The methodological quality scores ranged from 0 to 2 (out of 2) (online supplementary file table 4). There were 15 studies of high quality, 16 were moderate and 54 were low quality. Most studies scored negatively on items 1 (ie, study design/sampling method) and 6 (ie, response rate) and positively on items 4 (ie, measurement criteria) and 8 (ie, study subjects described) of the critical appraisal tool. A high level of heterogeneity was noted within radiography and MRI studies (I² range 96%-100%). The level of heterogeneity remained high (I² range 70%–100%) when studies were further subgrouped based on population, OA severity pattern, age and sex. Exclusion of low methodological quality studies did not decrease the heterogeneity levels.

Prevalence of patellofemoral OA based on radiography

Community-based population

In community-based populations, the overall prevalence of isolated PF OA from four studies¹⁹ ²⁴ ²⁶ ²⁸ was (mean proportion: (95% CI)) 7% (5 to 10), combined PF OA and TF OA from four studies¹⁹ ²⁴ ²⁶ ²⁸ was 17% (10 to 26), and any PF OA based on nine studies¹⁸ ¹⁹ ²⁴ ²⁶ ²⁸ ³⁹ ⁴⁶ ⁵⁴ ⁷⁵ was 38% (28 to 50) (figure 2A-C). In the any PF OA group, the prevalence of mild OA severity was 33% (17 to 51) from three studies²⁸ ⁴⁶ ⁷⁵ and definite OA severity was 40% (28 to 53) from six studies. ¹⁸ ¹⁹ ²⁴ ²⁶ ³⁹ ⁵⁴ The prevalence of any PF OA in community-based population was 32% (24 to 42) in those aged 50 years or over from

eight studies. ¹⁹ ²⁴ ²⁶ ²⁸ ³⁹ ⁴⁶ ⁵⁴ ⁷⁵ Only one study described prevalence of isolated compartment-specific PF OA, ²⁶ with prevalence of medial PF OA at 0.3% in women and 0.7% in men, and the prevalence of lateral PF OA at 1.6% in women and 3.7% in men. Sensitivity analyses based on sex revealed that the prevalence of any PF OA in women was 41% (31 to 51) from six studies ¹⁸ ¹⁹ ²⁴ ²⁶ ²⁸ ⁷⁵ and 47% (23 to 71) in men from four studies. ¹⁸ ¹⁹ ²⁴ ²⁶

Knee pain or symptomatic population

Radiographic and symptomatic knee osteoarthritis

Overall prevalence of isolated PF OA was 20% (11 to 32) from four studies, $^{25\ 30\ 33\ 55}$ combined PF OA and TF OA was 43% (8 to 83) from two studies $^{25\ 55}$ and any PF OA was 57% (43 to 70) from 13 studies $^{25\ 27\ 30\ 33\ 35\ 37\ 41\ 45\ 50\ 55\ 61\ 74\ 78}$ (figure 2G–I). In the any PF OA group, the prevalence of mild severity was 56% (41 to 70) from 12 studies. $^{25\ 30\ 33\ 35\ 37\ 41\ 45\ 50\ 55\ 61\ 74\ 78}$ The prevalence in individuals 50 years or over was 58% (42 to 72) from 12 studies. $^{25\ 27\ 30\ 33\ 35\ 37\ 41\ 45\ 55\ 61\ 74\ 78}$ and the prevalence of any PF OA in women was 36% (33 to 38) $^{27\ 45}$ and men was 35% (16 to 58) from two studies. $^{27\ 45}$

Healthy individuals

Data from four studies were included in meta-analyses to determine the prevalence of PF OA in healthy individuals. ³⁴ ⁶⁰ ⁶³ ⁷² Overall prevalence of any PF OA in healthy individuals (no pain, injury or OA) was 17% (6 to 33) (figure 3A). Sensitivity analyses based on sex could only be performed in women revealing the prevalence of PF OA in healthy women at 15% (1 to 43) from two studies. ⁶⁰ ⁷²

Radiographic knee OA or at risk of developing OA

Overall prevalence of any PF OA in individuals with radiographic OA or at risk of OA was 48% (35 to 61) from four studies $^{36\ 38}$ (figure 3B), with prevalence based on mild and definite OA severity as follows: 54% (17 to 89) from two studies $^{36\ 48}$ and 45% (30 to 60) from two studies, $^{38\ 43}$ respectively. In this group, the prevalence of any PF OA in women was 41% (8 to 80) from two studies. $^{38\ 43}$

Occupation-based population

Four studies reported occupation-based prevalence of PF OA. ⁵¹ ⁶⁸ ⁷² ⁷⁶ Overall prevalence of any PF OA in individuals in occupations or sports such as long distance running, soccer, shooting, floor layers, graphic designers and monks was 21% (9 to 37) (figure 3C). For any PF OA, the prevalence based on mild OA severity was 29% (10 to 52) from three studies. ⁶⁸ ⁷² ⁷⁶ The prevalence of any PF OA in individuals 50 years and over was 18% (9 to 28) from three studies. ⁵¹ ⁶⁸ ⁷² Sensitivity analyses based on sex revealed the prevalence of any PF OA in men was 14% (9 to 20) from two studies. ⁵¹ ⁶⁸ Analysis could not be

Table 1 Detail	Details of included radiography studies												
Author, year	Additional information	Sex	Age N (k	N (knees) D	Diagnostic criteria	Isolated	Isolated PF OA (%)		Combined (%) Unclear PF OA (%)	%) Unclear	PF 0A (%)		Severity
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral	
Community-based population	opulation												
Al-Arfaj and Al- Boukai ¹⁸ 2002	First two patients visiting a clinical invited everyday	ш	40±15 133	Z	_					18			Definite
		Σ	40±15 167	KL	_					88			Definite
Baker et al, ¹⁹ 2004	Randomly from community over the age of 60 years	ш	68±6 1475			∞			26				Definite
		Σ	266 9∓69	~	KL	6			12				Definite
Braga ²⁴ 2009	African-Americans (>45 years) recruited by probability sampling	ш	62±11 283	~	KL					53			Definite
		Σ	60±11 147	K	_					09			Definite
	Caucasians (>45 years) recruited by probability sampling	ш	62±11 799							42			Definite
		Σ	61±10 728	KL						54			Definite
Cho ²⁶ 2016	Random sample of individuals (>65 years) selected from a longitudinal study	ட	72±5 383			æ	0	2	28	59	2	15	Definite
		Σ	71±5 298			2	_	4	8	13	_	7	Definite
Cicuttini ²⁸ 1997	Unrelated women selected from a group participating in twin study of OA	ш	59±7 325	B ()	Burnett, 1994 (JSN and osteophyte)	13			15				Mild
Gross ³⁹ 2012	Offspring (and their spouses) of participants from original Framingham Heart Study and population-based sample of Framingham community	Ā	63±9 985	985 (1159) 0	OARSI					∞			Definite
Hunter Zhang ⁴⁶ 2007	Random sample from Health ABC study	Ē	74±3 595	0	OARSI					49			Mild
Lanyon ⁵⁴ 1998	Random sampling, stratified by age from the lists of two general practitioner	FM	62 452 (40–80)	∢	Altman					13			Definite
Szoeke ⁷⁵ 2006	Postmenopausal women selected from another population-based study	ш	60±3 224	0	OARSI					22			Mild
Tangtrakulwanich ⁷⁶ 2012	Individuals (>40 years) without rheumatic diseases using primary care	FM	>40 576	0	0–3 scale					38			Mild
Healthy individuals													
Englund ³⁴ 2005		FM	56±21 68	0	OARSI					6			Mild
McAlindon ⁶⁰ 1992		Σ	>55 78							2			Mild
		ш	>55 162							2			Mild
Naredo ⁶³ 2005		Ā	68±8 10	~	KL					70			Mild
Spector ⁷² 1996		ш	54±6 215	~	_					28			Mild
Knee pain or symptomatic population	matic population												
Barret ²¹ 1990		FM	78 (51–93) 1894	1894 (2197) A	Alhback					18			Mild
Bennett ²² 2007		FM	54±13 39		ACR					62			Mild
Davies ³² 2002		ΕM		174 (206) A	Ahlback	6			13				Mild
Duncan ² 2006		FM	93)	\mathbf{x}	KL	24			40				Definite
Hinman ⁴² 2014		FM	54±10 224			25	3	1	44				Definite
Kumm ⁵² 2012	6-year follow-up	Ē	51±6 128		Line drawing atlas	19			38				Mild
Lacey ⁵³ 2008		ш	50–64 200		KL	19			27				Definite
		Σ	50–64 158			35			25				Definite
		ш	>65 207			21			47				Definite
		Σ	>65 180			24			62				Definite
McAlindon ⁶⁰ 1992		Σ	>55 86	KL	_					12			Mild
		ட	>55 187							56			Mild
McAlindon ⁵⁹ 1996		FM	81±5 608	0	Osteophyte/JSN	2			20				Definite
Neame ⁶⁴ 2004	Right knee	ΕM	64±9 1729	1729 (1718)						14			Definite
													Continued

Author, year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isolated PF OA (%)		Combined (%)	Combined (%) Unclear PF 0A (%)		Severity
						Overall Medial	Lateral	PF + TF 0A	Overall Medial	l Lateral	_
	Left knee	FM		(1723)					14		Definite
Sadat Ali ⁶⁹ 1996		Σ	41±7	103 (126)	JSN, osteophytes and varus deformity	45		30			Mild
Thorstensson ⁷⁷ 2009			45 (35–54)	125	JS width <5 mm				33		Mild
Radiographic kne	Radiographic knee OA or high risk of knee OA										
Eti ³⁶ 1998	Knee OA	FM	56±11	240 (369)	Altman				34		Undear
Glass ³⁸ 2014	Knee OA or High risk	ш	62±8	1618 (3236)	KL				22		Definite
	Knee OA or High risk	Σ	62±8	1094 (2188)	KL				18		Definite
Huang ⁴³ 2000	Hand, hip or knee OA	ш.	64 (29–87)	270	Ϋ́				62		Definite
Jones ⁴⁸ 1993	Knee OA	FM	62 (18–91)	30 (60)	Osteophyte				75		Mild
Radiographic and symptomatic OA	symptomatic OA										
Cicuttini ²⁷ 2002		Σ	63±10	44	Osteophyte and JSN				48		Definite
		ш	63±10	99	Osteophyte and JSN				38		Definite
Cooper ³⁰ 1994		FM	>55	109	Radiograph atlas of knee OA	31					Mild
Elahi ³³ 2000		FM	66±11	292	OARSI	11					Mild
Ersoz ³⁵ 2003		FM	67=3	20 (40)	KL				88		Mild
Farrokhi ³⁷ 2013		FM	6∓39	167	KL				80		Mild
Hinman ⁴¹ 2002		FM	2∓89	41	ACR				81		Mild
Hunter Niu ⁴⁵ 2005		ш	9∓89	1500	KL				36		Mild
		Σ	74±3	262	KL				26		Mild
Kerna ⁵⁰ 2013		FM	45±6	438	Line drawing atlas				48		Mild
Ledingham ⁵⁵ 1993		FM	65 (34–91)	252	Modified Thomas 1995	24		64			Definite
Messier ⁶¹ 2005		FM	74±1	10	KL				06		Mild
Szebenyi ⁷⁴ 2006			66±10	167 (334)	OARSI				65		Mild
Van der Esch ⁷⁸ 2014		FM	62±8	298	Osteophyte				98		Mild
Post-traumatic population	ulation										
Ahn ¹⁷ 2012	Postoperative ACLR	FM	29∓9	117	IKDC				09		Mild
Barenius ²⁰ 2014	ACLR with patellar graft	FM	39∓6	69	Z.				32		Definite
	Uninjured contralateral	FM			КL				12		Definite
	Semitendinosus ACLR graft	FM	42±7	65	KL				36		Definite
Barenius ²⁰ 2014	Uninjured contralateral	FM	42±7	65	KL				12		Definite
Bourke ²³ 2012	Isolated ACL injury with ACLR	FM		118	IKDC				12		Mild
Cohen ²⁹ 2007	ACLR	FM	27 (15–46)	62	Fairbank				74		Mild
Culvenor³¹ 2014	ACLR	FM	45±10	36	OARSI	20			48		Mild
Englund ³⁴ 2005	Medial meniscectomy	FM	54±11	250	OARSI			19			Mild
	Lateral meniscectomy	FM	54±11	29	OARSI			27			Mild
Hertel ⁴⁰ 2005	ACLR—patellar	FM	42 (22–62)	29	IKDC				19		Mild
Hulet ⁴⁴ 2015	Arthroscopic partial lateral meniscectomy	FM	57±12	89	IKDC			33			Mild
Jarvela ⁴⁷ 2001	ACLR with patellar graft	FM	31 (15–61)	100	IKDC				47		Mild
Keays ⁴⁹ 2007	ACLR with patellar/semitendinosus and gracilis graft	FM	27 (18–38)	26				25			Mild
Li ⁵⁶ 2011	ACLR	FM	26±10	249	KL				11		Mild

	Additional information	Sex	(Age	N (knees)	Diagnostic criteria	Isolated PF OA (%)	_	Combined (%) Unclear PF OA (%)	Unclear PF	0A (%)		Severity
						Overall Medial	al Lateral	PF + TF 0A	Overall	Medial	Lateral	
Liden ⁵⁷ 2008	ACLR with patellar graft	FM	30 (17–52)	72	Ahlback and Fairbank				14			Mild
	ACLR with hamstring graft	FM	29 (15–59)	41					2			Mild
Lohmander ⁵⁸ 2004	ACL injury with surgery	ш	31 (26–40)	41	OARSI				20			Mild
	ACL injury without surgery	ш	31 (26–40)	26					4			Mild
Murray ⁶² 2012	ACLR with patellar graft	FM		83	IKDC				9/			Mild
	Uninjured contralateral	FM		42					59			Mild
Neuman ⁶⁵ 2009	ACL injury with meniscal injury	FM	43±8	22	OARSI				18			Mild
	ACL injury without meniscal injury	FM	43±8	38	OARSI				3			Mild
Neuman ⁶⁵ 2009	ACLR with meniscal injury	FM	43±8	1	OARSI				55			Mild
	ACLR without meniscal injury	FM	43±8	4	OARSI				25			Mild
	Overall (ACL with or with meniscal or reconstruction)	FM	43±8	75	OARSI			6				Mild
Oiestad ⁶⁶ 2013	ACLR	FM	71±8	181					76			Mild
Roth ⁶⁷ 1985	ACLR (non-augmented)	FM		38	Osteophyte size					13	40	Mild
	ACLR (augmented)	FM		43	Osteophyte size					4	14	Mild
Sajovic ⁷⁰ 2006	ACLR with semitendinosus and gracilis	FM	24 (14–42)	28	IKDC				7			Mild
	ACLR patellar tendon	FM	27 (16–46)	26	IKDC				12			Mild
Salmon ⁷¹ 2006	ACLR—13-year follow-up	FM	27 (25–28)	43	IKDC				26			Mild
Sward ⁷³ 2013	ACL injured (with or without ACLR) with varus alignment	FM	42±7	36	OARSI			22				Mild
	ACL injured (with or without ACLR) with valgus/neutral	FM	39∓6	29	OARSI			7				Mild
Occupation-based population	population											
Kujala ⁵¹ 1995	Long distance runners	Σ	9∓09	28	KL				=			Definite
	Soccer players	Σ	57±5	31	KL				16			Definite
	Weight lifters	Σ	9∓09	29	KL				28			Definite
	Shooters	Σ	61±5	29	KL				3			Definite
Rytter ⁶⁸ 2009	Floor layers	Σ	53 (39–68)	134	Modified Ahlback Scale				6			Mild
Rytter ⁶⁸ 2009	Graphic designers	Σ	58 (40-70)	120	Modified Ahlback Scale				18			Mild
Spector ⁷² 1996	Ex-athletes	ш	52±6	81	KL				42			Mild
Tangtrakulwanich ⁷⁶	Monk		44±18	261	KL	19		33				Mild

Where possible, age is presented as mean±SD or mean (range).
Mild exervery indicates at least mild OA severity and definite indicates definite OA severity (equivalent to KL≥2).
ACIR, ACL reconstructions, CAR, American College Rheumatology; F, female; FM, both female and male; KDC, International Knee Documentation Committee, JSN, joint space narrowing; M, male; OA, osteoarthritis; OARSI, Osteoarthritis Research Society International; PF OA, patellofemoral osteoarthritis.

Age N (knees) Diagnostic Combined <	Table 2 D	Details of included MRI studies	RI stud	ies											
Privated population Overall Medial Interval December Private page (Ministration) Private page (Ministration) </th <th>Author, year</th> <th>ı</th> <th>Sex</th> <th>Age</th> <th>N (knees)</th> <th>Diagnostic criteria</th> <th>Isolated PF (</th> <th>0A (%)</th> <th></th> <th>Combined (%)</th> <th>Unclear PF 0</th> <th>۷ (%)</th> <th></th> <th>Feature</th> <th>Case definition</th>	Author, year	ı	Sex	Age	N (knees)	Diagnostic criteria	Isolated PF (0A (%)		Combined (%)	Unclear PF 0	۷ (%)		Feature	Case definition
by based population by based population 16 > <65 years							Overall	Medial	Lateral	PF + TF 0A	Overall	Medial	Lateral		
2-65 years	Community-1	based population													
2-f5 pears FM ±45 205 18 38 2 * FOA cohort FM 64±9 965 (1159) WORMS 20 44 19 F GAA cohort FM 65±7 904 WORMS 25 33 40 6 FA Cohort FM 65±7 904 WORMS 25 33 40 6 FA Cohort FM 65±9 375 WORMS 33 18 40 OAN cohort FM 472±7 38 0-4 scale 30 17 30 12 FM 422±7 38 0-4 scale 154 WORMS 34 30 81 84 12 FM 422±7 38 0-4 scale 154 WORMS 30 17 81 84 12 FM 62±9 111 WORMS 35 17 81 84 12 FM 62±9 111 WORMS 47 81 84	Ding ⁸⁶ 2005	<45 years	Æ	<45	167	0–4 scale					16			Cartilage defect	>2
2' FOA cohort FM 64±9 986 (1159) WORMS 20 44 FOA cohort FM 62±7 904 WORMS 20 44 15 TASOAC cohort FM 62±7 904 WORMS 25 33 OAN cohort F 66±9 375 MOAKS 25 33 12 Ary WORMS 33 18 30 12 Ary WORMS 35 17 3 12 Ary WORMS 35 17 3 12 Ary WORMS 35 17 3 Ary WORMS 35 17 3 Ary WORMS 35 17 31 Ary WORMS 35 17 31 Ary WORMS 36 47 47 Ary Ary WORMS 37 47 Ary Ary Ary Ary Ary Ary Ary Ary Ary		>45 years	ΕM	>45	205						38			Cartilage defect	>2
FOA cohort FM 66±8 970 WORMS 20 44 19 40 40 40 40 40 40 40 4	Gross ³⁹ 2012*		Æ	64∓9	985 (1159)	WORMS		20	18					Cartilage damage	73
1 1 1 1 1 1 1 1 1 1	Stefanik ⁹⁵ 2013	FOA cohort	ΕM	64±8	970	WORMS	20			44				Cartilage damage	22
40 40 40 40 40 40 40 40	Wang ⁹⁹ 2015	TASOAC cohort	FM	62±7	904	WORMS					19			BML	<u></u>
Athy duals OA4 cohort M 66±9 375 MOAKS 33 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 18 17 18 17 18 17 18 17 17 17 17 17 17 17 18 17 18											40			Cartilage defect	>2
MORINAS 33 18 18 18 18 18 18 18	Healthy indiv	/iduals													
F 60±9 474 MOAKS 34 30 18 19 19 19 19 19 19 19	Sharma ⁹² 2014	OAI cohort	Σ	6∓09	375	MOAKS	25			33				Cartilage damage	0,
F 60±9 474 MOAKS 34 30 30 30 30 30 30 30						WORMS	33			18				BML	0<
17 FM 42±7 38 0.4 scale 17 3 3 3 3 4 4 4 4 4 4			ட	6∓09	474	MOAKS	34			30				Cartilage damage	>0
12 FM 42±7 38 0-4 scale 3 3 3 3 3 3 3 3 3						WORMS	35			17				BML	°×
Pow Symptomatic population or symptomatic population Modes Modes 154 WORMS 81 68 Peavy lifting (BOKs chort lifting (BOKs chort) M. 69±9 40 WORMS 60 91 84 Cocupational exposures M. 64±9 47 WORMS 60 72 47 No heavy lifting/ out occupational exposures M. 67±9 38 WORMS 47 47 BOKS cohort FM 67±9 265 WORMS 91 82 Anhui osteoarthritis run exponent FM 65±12 174 0-4 scale 82	Wang ¹⁰⁰ 2012		FM	42±7	38	0–4 scale					œ.			Cartilage defect	>2
Pack Schort M 68±9 154 WORMS 81 68 Heavy iffing (BOKS ochort) M 69±9 40 WORMS 60 84 Occupational exposures M 64±9 47 WORMS 72 72 No heavy lifting/ exposures M 70±9 98 WORMS 47 47 No heavy lifting/ exposures M 50±9 265 WORMS 91 82 Anhui osteoarthritis FM 56±12 174 0-4 scale 82 60	Knee pain or	symptomatic popula	tion												
F 64±9 111 WORMS F 64±9 111 WORMS F 60 F 6	Amin Baker ⁷⁹ 2009*		Σ	68±9	154	WORMS						81	89	Maximal cartilage morphology	>2
Heavy lifting (BOKS ochort) M 69±9 40 WORMS 60 Cocupational exposures M 70±9 98 WORMS 47 No heavy lifting/ occupational exposures M 70±9 98 WORMS 47 BOKS cohort FM 67±9 265 WORMS 91 Anhui osteoarthritis FM 56±12 174 0-4 scale 82 cohort FM 67 ±0 67 ±0 67 ±0 67 ±0			ш	64∓9	111	WORMS						91	84	Maximal cartilage morphology	22
Occupational exposures M 64±9 47 WORMS 72 exposures No heavy lifting/ occupational exposures M 70±9 98 WORMS 47 exposures exposures BOKS cohort FM 67±9 265 WORMS 91 Anhui osteoarthritis FM 56±12 174 0-4 scale 82 cohort FM 67±9 62 scale 62 scale 62	Amin Goggins ⁸⁰ 2008*	Heavy lifting (BOKS cohort)	Σ	6∓69	40	WORMS					09			Cartilage morphology	22
No heavy lifting/ occupational exposures M 70±9 98 WORMS 47 exposures BOKS cohort FM 67±9 265 WORMS 91 Anhui osteoarthritis FM 56±12 174 0-4 scale 82 cohort FM 67±3 62±12 62±12 62±12 62±12		Occupational exposures	Σ	e4±9	47	WORMS					72			Cartilage morphology	>2
BOKS cohort FM 67±9 265 WORMS 91 Anhui osteoarthritis FM 56±12 174 0-4 scale 82 cohort cohort cohort cohort cohort cohort cohort		No heavy lifting/ occupational exposures	Σ	70±9	86	WORMS					47			Cartilage morphology	>2
Anhui osteoarthritis FM 56±12 174 0–4 scale 82 cohort	Amin Guermazi ⁸¹ 2008	BOKS cohort	Ξ	67±9	265	WORMS					91			Cartilage morphology	22
0.5 5.7	Cai ⁸² 2015	Anhui osteoarthritis cohort	Ā	56±12	174	0–4 scale					82			Cartilage damage	>2
U-3 scale			F			0–3 scale					52			BML	<u>V</u> I

Table 2 Cor	Continued													
Author, year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isolated PF OA (%)	۷ (%)		Combined (%)	Unclear PF OA (%)	(%)		Feature	Case definition
Crema ⁸⁴ 2014		FM	58±10	163	0–3 scale					13			BML	
Peterfy ⁹⁰ 2004		Æ	61±8	19	WORMS					94			Cartilage abnormality	√ I
										16			BML	
										81			ses	\[\times\]
Tsavalas ⁹⁷ 2012	Various knee-related clinical conditions	Æ	≥50	315	ICRS					2			Cartilage lesion	>2
		Æ	>50	200	ICRS					33			Cartilage lesion	>2
Radiographic k	Radiographic knee OA or high risk of knee OA	of knee	OA											
Gross 2012 ³⁹ MOST cohort	MOST cohort	Æ	62±8	1381 (1621)	WORMS		69	36					Cartilage damage	>2
Stefanik Gross MOST cohort 2015 ^{95*} (O&C)	MOST cohort	Æ	8∓69	1137	WORMS		22	13		63			BML	∑
Stefanik Gross ⁹⁴ 2015 [†] (ACR)	MOST cohort	ட	9799	653 (2594)	WORMS					51			Cartilage damage	>2
										29			BML	<u></u>
		Σ	8∓99	400 (1486)	WORMS					43			Cartilage damage	>2
										23			BML	ĹΊ.
Runhaar ⁹¹ 2014		ட	26±3	348 (529)	MOAKS	44	35	18					BML	∑/I
				348 (467)		47	42	18					Cartilage defect	∑/I
				348 (408)		33	27	25					Osteophytes	\(\)
						Overall	Medial	Lateral	PF + TF 0A	Overall	Medial	Lateral		
Radiographic a	Radiographic and symptomatic OA													
Chan ²⁵ 1991		EM	58	20	0–3 scale	0			75				Cartilage loss	, VI
						0			75				Osteophytes	1 √1
atic	population													
	ACLR with or without FM meniscus repair	Æ	30∓8	111	MOAKS	12					2	m	BML	✓I
	ACL rupture	FM	25±33	143	MOAKS					29			Osteophytes	√ I
Wang ¹⁰⁰ 2012	Arthroscopic partial medial meniscectomy (2 years post)	Σ	43±5	63	0–4 scale	19							Cartilage defect	≥2
														Continued

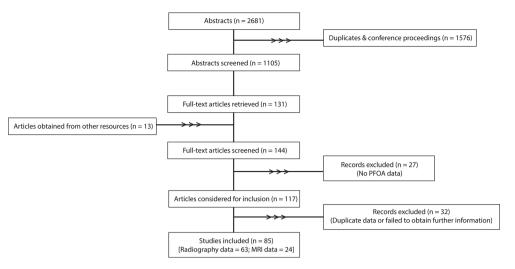
Table 2 Continued	ontinued													
Author year	Author year information	Sex	Апе	N (knees)	Diagnostic criteria	Isolated PF OA (%)	04 (%)		Combined (%)	Unclear PF OA (%)	(%)		Feature	Case
General population	ulation		200	(222111)							(21)			
Gross ⁸⁷ 2011	Framingham Heart study offsprings + spouses and people from Framingham town	Ξ	64±9	1094	WORMS						28		Cartilage damage	>2
				1096								42	Cartilage damage	>2
Hayes ⁸⁸ 2005	With or without pain F or OA	ш	46±1	117 (232)	Modified Nayes arthroscopy system					99			Cartilage defect	All'A
Kornaat ⁸⁹ 2005	40–70 years with familial generalised OA	Ε	60 (43–77)	205	KOSS	99							Cartilage defect	ŽI
Sowers ⁹³ 2011	Sowers ³³ 2011 Middle-aged women	ட	56 ±5	360 (724)						68			Cartilage defect	
						Overall	Medial	Lateral	PF + TF 0A	45 Overall	Medial	Lateral	BML	
Sowers ⁹³ 2011	Sowers ⁹³ 2011 Middle-aged women	ш	2e±5	360 (724)						26			Osteophytes	
Teng ⁹⁶ 2015	Without no OA or isolated OA	Ā	51±10	61	WORMS					46			Cartilage lesion	~

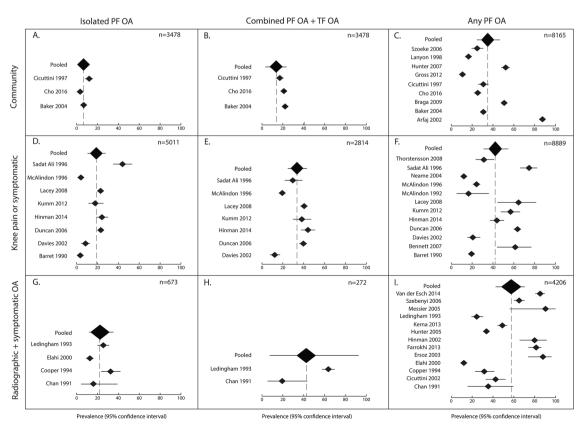
Where possible, age is presented as mean±SD or mean (range).

^{*}Studies included in subgroup analyses.

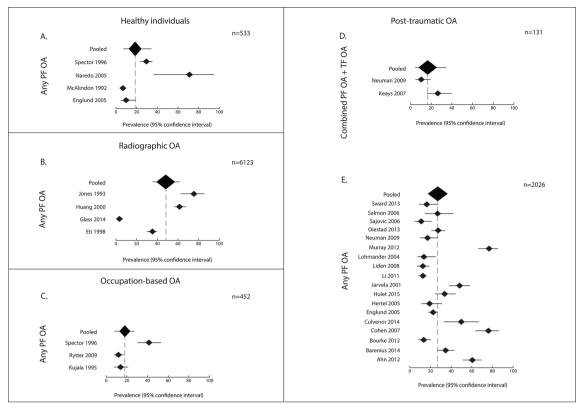
[†]Percentage based on regions.

ACLR, ACL reconstruction, BOKS, Boston Knee Osteoarthritis Study; BML, bone marrow lesion, F, female; FM, both female and male; FOA, Framingham Osteoarthritis; ICRS, International Cartilage Repair Society; KOSS; Knee Osteoarthritis Scoring System; M, male; MOAKS, MRI Osteoarthritis Knee Score; MOST, Multicenter Knee Osteoarthritis; PF OA, patellofemoral osteoarthritis; OA, osteoarthritis; OAI, Osteoarthritis Initiative; TASOAC, Tasmanian Older Adult Cohort. WORMS, Wholeorgan MRI Score.




Figure 1 Flow chart of the study selection process. PFOA, patellofemoral osteoarthritis.

performed in women. For any PF OA, the prevalence of any PF OA in high-intensity activity population was 19% (11 to 29) from one study⁵¹ and 19% (3 to 45) in low-intensity activity population based on three studies. ^{51 68 76}


Post-traumatic population

The overall prevalence of isolated PF OA from two studies was 17% (5 to 34) from two studies^{49 65} (figure 3D). In the injured knee, the overall of prevalence of any PF OA in post-traumatic

population (range: 5 to 22 years) was 27% (19 to 34) from 19 studies 17 20 23 29 31 34 40 44 47 49 56 –58 62 65 66 70 71 73 (figure 3E). For any PF OA, the prevalence of mild OA severity was 26% (18 to 34) from 18 studies. 17 23 29 31 34 40 44 47 49 56–58 62 65 66 70 71 73 Sensitivity analyses based on age revealed the prevalence of any PF OA was 27% (18 to 36) in individuals under 50 years 17 20 23 29 31 40 47 49 56 –58 65 66 70 71 73 and 26% (17 to 35) in those 50 years or over. 34 44 In the uninjured knee, overall prevalence of any PF OA was 18% (3 to 42) from three studies, 20 56 62 with

Figure 2 Prevalence of patellofemoral osteoarthrits (PF OA) in community, knee pain or symptomatic and radiographic and symptomatic OA populations. TF, tibiofemoral.

Figure 3 Prevalence of PF OA in healthy individuals, radiographic OA, occupation-based OA and post-traumatic OA populations. PF OA, patellofemoral osteoarthritis; TF, tibiofemoral.

prevalence of mild OA severity at 25% (2 to 87) from two studies. $^{56\,62}$

Prevalence of PF OA based on MRI

Community-based population

The prevalence of isolated PF structural damage and combined PF and TF structural damage based on cartilage defect were 20% and 44% (respectively) and BML was 18% and 22% (respectively) based on a single study. The prevalence of any PF structural damage based on cartilage defects was 44% (25 to 65) from three studies and BML was 29% (11 to 51) from two studies (figure 4A-B).

Knee pain or symptomatic population

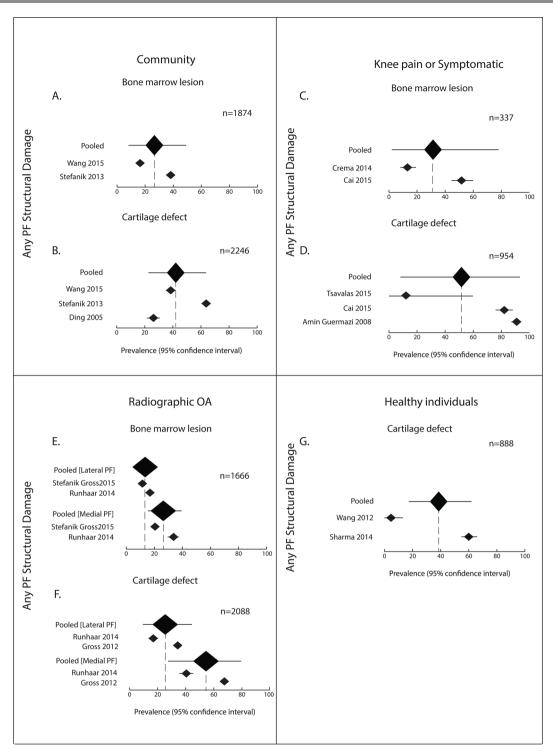
The prevalence of overall isolated PF structural damage and combined PF and TF structural damage could not be calculated for this study population. The prevalence of any PF structural damage was 52% (9 to 93) based on cartilage defect^{81 82 97} and 32% (3 to 72) based on BML^{82 84} (figure 4C, D). Data from one study could not be pooled because of WORMS definition used for OA diagnosis (cartilage damage defined as ≥1 grade in this study compared with ≥2 grade used in other studies), ⁹⁰ with PF structural damage prevalence of 94%, 16% and 81% based on cartilage defect, BML and osteophytes, respectively. Data stratified based on age revealed that the prevalence of any PF structural damage was 71% (33 to 97) in individuals 50 years or over based on cartilage defect. ^{81 82 97}

Radiographic knee osteoarthritis or at risk of developing OA

An overall prevalence of isolated PF structural damage, combined PF and TF structural damage and any PF structural damage based on cartilage defect or BML could not be determined for this

study population. Two studies reported prevalence of isolated PF structural damage in the medial and lateral PF compartments based on cartilage defect^{39 91} and BML.^{39 101} The prevalence of isolated medial and lateral PF structural damage was 56% (29 to 81) and 27% (11 to 46), respectively,^{39 91} based on cartilage defect and 28% (17 to 41) and 15% (11 to 20), respectively,^{39 101} based on BML (figure 4E,F). A single study described PF structural damage prevalence based on PF compartment regions (not based on number of individuals or knees)⁹⁴ and reported prevalence of any PF structural damage based on cartilage defect and BML in women (51% and 29%, respectively) and men (43% and 23%, respectively).⁹⁴ No further analyses could be conducted in this study population.

Healthy individuals


The overall prevalence of any PF structural damage based on cartilage defect was 40% (19 to 63)^{92 100} (figure 4G). Since there were only two studies included in this study population, no further analyses could be conducted.

Radiographic and symptomatic knee OA

The prevalence of combined PF and TF structural damage was 75% based on cartilage defect and osteophytes from a single study, 83 and no further analyses could be conducted.

Post-traumatic population

Two studies reported prevalence based on osteophytes in ACL injured or reconstructed, ⁸⁵ 98 with the prevalence of any PF structural damage at 29% 98 and compartment-specific prevalence of medial and lateral PF structural damage at 23% and 7%, respectively. ⁸⁵ The prevalence of medial and lateral PF structural damage based on BML were 2% and 3%, respectively. ⁸⁵ The

Figure 4 Prevalence of MRI-defined PF structural damage in community, knee pain or symptomatic, radiographic OA and healthy individual populations. PF OA, patellofemoral osteoarthritis.

prevalence of any PF structural damage was 36% in an ACL ruptured population based on cartilage defect. In individuals 2 years post arthroscopic partial medial meniscectomy, the prevalence of isolated PF structural damage was 19% based on cartilage defect.

General population

Five studies were included in the general population category. 87-89 93 96 The cartilage defect based prevalence of any PF structural damage was 49% (36 to 62) from two studies using

the WORMS^{87 96} and was 75% (56 to 91) from three studies using the KOSS.^{88 89 93} The prevalence of any PF structural damage based on BML and osteophytes were 45% and 56%, respectively.⁹³

DISCUSSION Summary of findings

This systematic review with meta-analysis synthesised prevalence of PF OA and included 85 studies. Meta-analysis revealed

the prevalence of any radiographic PF OA in knee pain or symptomatic, radiographic TF OA or at risk of developing TF OA, and radiographic and symptomatic knee OA cohorts was 43%, 48% and 57%, respectively. The prevalence of any MRI-defined PF structural damage in knee pain or symptomatic population was 32% and 52% based on BML and cartilage defect, respectively. This systematic review and meta-analysis highlights the high prevalence of PF OA/ PF structural damage in a wide range of study populations using different imaging tools.

One half (43%–57%) of people with symptoms and/or established radiographic TF OA had PF OA based on radiography. Similarly, a high prevalence of post-traumatic population exhibited signs of PF OA (\sim 30). With such a high prevalence of PF OA, treatments designed specifically for the PF compartment may be required in the OA management strategy. 102 103 Clinicans should assess for symptoms of PF pain or PF OA and treat patients accordingly. The few studies that specifically evaluated interventions such as exercise, physical therapy, taping and bracing to address PF OA^{98 99 104} provide some evidence for their use. While some studies hypothesise that there is a potential continuum of PF pain to PF OA¹⁰⁵; no high-quality evidence has supported the association between PF pain in younger individuals to the development of PF OA. 106 Unfortunately, studies included in the knee pain or symptomatic OA population category did not differentiate between PF pain and generalised knee pain. Therefore, in the current systematic review, we were not able to determine the prevalence of PF OA in a PF pain population.

Healthy and community cohorts are also likely to demonstrate some PF OA, with radiographic PF OA evident in 17% and 38%, respectively. Since most studies in the community-based meta-analysis were conducted in individuals over the age of 50 years, it appears that radiographic PF OA may be a natural accompaniment to ageing. The only study with a mean age of ≤50 years (but a large range 20 to 93 years), described a particularly high PF OA prevalence in women (81%) and men (88%). The authors hypothesised that cultural factors in Saudi Arabia, such as sitting cross-legged, squatting and praying with knees fully flexed on the ground, may contribute to the high prevalence. Exclusion of this data from meta-analysis revealed the prevalence of any PF OA was 32% in the community population.

The prevalence of MRI-defined PF structural damage in knee pain or symptomatic population was 52%, which was similar to the healthy (40%), community (44%) and general population (49%) cohorts. The high prevalence of MRI-defined PF structural damage may reflect the ability of MRI to detect early changes in the joint that are not visible on radiographs. However, it is unclear whether these findings represent PF OA, as there is no accepted and validated MRI definition of OA. MRI features such as cartilage damage and BMLs can predict incident radiographic OA, ¹⁰⁷ development of knee pain ¹⁰⁸ and future total knee replacement. ¹⁰⁹ Thus, it is plausible that these MRI findings may represent early stages of the PF OA disease process. Further research is needed to investigate the clinical relevance of MRI-defined PF structural damage.

The current systematic review extends on the results from a prior study. The previous systematic review reported the radiographic prevalence of PF OA in population-based and symptom- based population; whereas, the current review reported prevalence of PF OA in multiple different populations. Thus, an additional 32 studies were included in the meta-analysis. Further to this, the current review included meta-analysis on prevalence of MRI-defined PF structural damage. Furthermore, the current study extends on the findings from the earlier review by categorising data into multiple study populations and data

pooling with subanalysis based on age, sex, compartment-specific OA pattern and OA severity pattern to obtain more accurate estimations of prevalence.

Limitations

This systematic review is not without limitations. First, a very high level of heterogeneity was noted, particularly in the any PF OA group. The inclusion of isolated PF OA, combined PF OA and TF OA, and unclear PF OA (isolated or combined) data in the any PF OA group may explain the high level of heterogeneity. Other potential sources of heterogeneity include differences in diagnostic criteria, populations and case definitions. Second, all relevant studies were included in this systematic review, regardless of methodological quality. Data from 54 low methodological quality studies were included in this review. While this systematic review is subject to bias through the inclusion of low-quality studies, the levels of evidence applied to the pooled data take into account quality, quantity and homogeneity of studies. Third, we restricted the search to studies published in English. Inclusion of data from non-English language studies may alter the outcomes. Fourth, a number of diagnostic criteria were converted to allow data pooling, which may have influenced the results of this systematic review. Fifth, PF structural damage based on MRI should be interpreted with some caution, as fewer studies contributed to meta-analysis within each study population. Lastly, we recognise that there is no accepted and validated definition of radiographic or MRI defined PF OA. Because of this the prevalence data will largely differ in any given study based on different definitions, which may have influenced the results.

Recommendations

While conducting this systematic review, we identified that prevalence data were not well presented in many studies. We recommend that future studies more clearly describe prevalence data based on OA patterns (eg, isolated PF OA vs combined PF OA and TF OA, medial vs lateral PF OA), OA severity (eg, none, mild and moderate) and subgroups (eg, age, sex). Further to this, discrepancies in diagnostic criteria definitions and reporting were noted; therefore, the PF OA definitions should be clearly stated. Better standardisation of data presentation in future studies will help to better understand PF OA epidemiology.

Implications for research and practice

PF OA is an important source of symptoms in knee OA, and is strongly associated with disability. Our systematic review and meta-analysis revealed the prevalence of PF OA is highly based on radiography and MRI in community, symptomatic, radiographic knee OA and traumatic knee OA populations. Therefore, well-designed studies are required to evaluate biomechanical, functional and psychological impairments associated with PF OA. Addressing potentially modifiable risk factors for PF OA may reduce the risk of development and progression of PF OA and may have implications for TF disease. This systematic review also revealed a higher prevalence of combined PF OA and TF OA pattern than isolated PF OA; therefore, it is important to explore interventions that target both PF and TF joints.

CONCLUSIONS

Synthesis of prevalence data on PF OA and MRI-defined PF structural damage indicates that signs of PF damage are common and should not be ignored in research or clinical practice. In the future, MRI might become highly relevant to identify patients at

Review

early disease stages where the disease process may still be reversible and amenable to interventions.

What are the new findings?

- Patellofemoral OA is prevalent in individuals in a very wide range of settings—in asymptomatic individuals and in patients with knee pain.
- The prevalence rates are influenced by different diagnostic criteria.
- MRI-defined patellofemoral structural damage criteria may assist in identifying patients at early disease stages.

Contributors All authors were fully involved in the study and preparation of the manuscript. Each author has read and concurs with the content in the final manuscript. Study conception: HFH, KMC, JJS. Protocol: HFH, KMC, JJS. Search strategy: HFH, KMC, JJS. Abstract screening: HFH, NW. Data extraction: HFH, JJS, KMC. Methodological quality ratings: NW, ZM. Data analysis and interpretation: HFH, JJS, KMC. Manuscript preparation: HFH, JJS, KMC, NW, ZM.

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

- 1 Cross M, Smith E, Hoy D, *et al*. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. *Ann Rheum Dis* 2014:73:1273–30
- 2 Duncan RC, Hay EM, Saklatvala J, et al. Prevalence of radiographic osteoarthritis-it all depends on your point of view. Rheumatology 2006;45:757–60.
- 3 Duncan R, Peat G, Thomas E, et al. Does isolated patellofemoral osteoarthritis matter? Osteoarthritis Cartilage 2009;17:1151–5.
- 4 Duncan R, Peat G, Thomas E, et al. Incidence, progression and sequence of development of radiographic knee osteoarthritis in a symptomatic population. Ann Rheum Dis 2011;70:1944–8.
- 5 Stefanik JJ, Guermazi A, Roemer FW, et al. Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the multicenter osteoarthritis study. Osteoarthritis Cartilage 2016;24:1160–6.
- 6 Culvenor AG, Cook JL, Collins NJ, et al. Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med 2013;47:66–70.
- 7 Kobayashi S, Pappas E, Fransen M, et al. The prevalence of patellofemoral osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 2016;24:1697–707.
- 8 Guermazi A, Roemer FW, Burstein D, et al. Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis. Arthritis Res Ther 2011;13:247.
- 9 Loney PL, Chambers LW, Bennett KJ, et al. Critical appraisal of the health research literature: prevalence or incidence of a health problem. Chronic Dis Can 1998;19:170–6.
- 10 Genaidy AM, Lemasters GK, Lockey J, et al. An epidemiological appraisal instrument - a tool for evaluation of epidemiological studies. *Ergonomics* 2007;50:920–60.
- 11 Higgins JPT. The Cochrane Collaboration, . Cochrane handbook for systematic reviews of interventions, 2008. ISBN: 978-0-470-69951-5.
- 12 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957;16:494–502.
- 13 Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage 2007;15(Suppl A):A1–A56.
- 14 Hunter DJ, Arden N, Conaghan PG, et al. Definition of osteoarthritis on MRI: results of a delphi exercise. *Osteoarthritis Cartilage* 2011;19:963–9.
- 15 Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004:12:177–90.
- Hunter DJ, Guermazi A, Lo GH, Gh L, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI osteoarthritis knee score). Osteoarthritis Cartilage 2011;19:990–1002.

- 17 Ahn JH, Kim JG, Wang JH, *et al.* Long-term results of anterior cruciate ligament reconstruction using bone-patellar tendon-bone: an analysis of the factors affecting the development of osteoarthritis. *Arthroscopy* 2012;28:1114–23.
- 8 Al-Arfaj A, Al-Boukai AA. Prevalence of radiographic knee osteoarthritis in Saudi Arabia.. Clin Rheumatol 2002;21:142–5.
- 19 Baker KR, Xu L, Zhang Y, et al. Quadriceps weakness and its relationship to tibiofemoral and patellofemoral knee osteoarthritis in Chinese: the Beijing osteoarthritis study. Arthritis Rheum 2004;50:1815–21.
- 20 Barenius B, Ponzer S, Shalabi A, et al. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial. Am J Sports Med 2014;42:1049–57.
- 21 Barrett JP, Rashkoff E, Sirna EC, et al. Correlation of roentgenographic patterns and clinical manifestations of symptomatic idiopathic osteoarthritis of the knee. Clin Orthop Relat Res 1990;253:179–83.
- 22 Bennett AN, Crossley KM, Brukner PD, et al. Predictors of symptomatic response to glucosamine in knee osteoarthritis: an exploratory study. Br J Sports Med 2007;41:415–9.
- 23 Bourke HE, Gordon DJ, Salmon LJ, et al. The outcome at 15 years of endoscopic anterior cruciate ligament reconstruction using hamstring tendon autograft for 'isolated' anterior cruciate ligament rupture. J Bone Joint Surg Br 2012;94:630–7.
- 24 Braga L, Renner JB, Schwartz TA, et al. Differences in radiographic features of knee osteoarthritis in African-Americans and caucasians: the johnston county osteoarthritis project. Osteoarthritis Cartilage 2009;17:1554–61.
- 25 Chan WP, Lang P, Stevens MP, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 1991;157:799–806.
- 26 Cho HJ, Gn KK, Kang JY, et al. Epidemiological characteristics of patellofemoral osteoarthritis in elderly Koreans and its symptomatic contribution in knee osteoarthritis. Knee 2016;23:29–34.
- 27 Cicuttini F, Wluka A, Wang Y, et al. The determinants of change in patella cartilage volume in osteoarthritic knees. *J Rheumatol* 2002;29:2615–9.
- 28 Cicuttini FM, Spector T, Baker J. Risk factors for osteoarthritis in the tibiofemoral and patellofemoral joints of the knee. *J Rheumatol* 1997;24:1164–7.
- 29 Cohen M, Amaro JT, Ejnisman B, et al. Anterior cruciate ligament reconstruction after 10 to 15 years: association between meniscectomy and osteoarthrosis. Arthroscopy 2007;23:629–34.
- 30 Cooper C, McAlindon T, Snow S, et al. Mechanical and constitutional risk factors for symptomatic knee osteoarthritis: differences between medial tibiofemoral and patellofemoral disease. J Rheumatol 1994;21:307–13.
- 31 Culvenor AG, Lai CC, Gabbe BJ, et al. Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction. Br J Sports Med 2014;48:435–9.
- 32 Davies AP, Vince AS, Shepstone L, et al. The radiologic prevalence of patellofemoral osteoarthritis. Clin Orthop Relat Res 2002;402:206–12.
- 33 Elahi S, Cahue S, Felson DT, et al. The association between varus-valgus alignment and patellofemoral osteoarthritis. Arthritis Rheum 2000;43:1874–80.
- 34 Englund M, Lohmander LS. Patellofemoral osteoarthritis coexistent with tibiofemoral osteoarthritis in a meniscectomy population. Ann Rheum Dis 2005;64:1721–6.
- 35 Ersoz M, Ergun S. Relationship between knee range of motion and Kellgren-Lawrence radiographic scores in knee osteoarthritis. Am J Phys Med Rehabil 2003;82:110–5.
- 36 Eti E, Kouakou HB, Daboiko JC, et al. Epidemiology and features of knee osteoarthritis in the ivory coast. Rev Rhum Engl Ed 1998;65:766–70.
- 37 Farrokhi S, Piva SR, Gil AB, et al. Association of severity of coexisting patellofemoral disease with increased impairments and functional limitations in patients with knee osteoarthritis. Arthritis Care Res 2013;65:544–51.
- 38 Glass N, Segal NA, Sluka KA, et al. Examining sex differences in knee pain: the multicenter osteoarthritis study. Osteoarthritis Cartilage 2014;22:1100–6.
- 39 Gross KD, Niu J, Stefanik JJ, et al. Breaking the law of Valgus: the surprising and unexplained prevalence of medial patellofemoral cartilage damage. Ann Rheum Dis 2012;71:1827–32.
- 40 Hertel P, Behrend H, Cierpinski T, et al. ACL reconstruction using bone-patellar tendon-bone press-fit fixation: 10-year clinical results. Knee Surg Sports Traumatol Arthrosc 2005;13:248–55.
- 41 Hinman RS, Bennell KL, Metcalf BR, et al. Temporal activity of vastus medialis obliquus and vastus lateralis in symptomatic knee osteoarthritis. Am J Phys Med Rehabil 2002;81:684–90.
- 42 Hinman RS, Lentzos J, Vicenzino B, et al. Is patellofemoral osteoarthritis common in middle-aged people with chronic patellofemoral pain? Arthritis Care Res 2014;66:1252–7.
- 43 Huang J, Ushiyama T, Inoue K, *et al*. Vitamin D receptor gene polymorphisms and osteoarthritis of the hand, hip, and knee: acase-control study in Japan. *Rheumatology* 2000;39:79–84.
- 44 Hulet C, Menetrey J, Beaufils P, et al. Clinical and radiographic results of arthroscopic partial lateral meniscectomies in stable knees with a minimum follow up of 20 years. Knee Surg Sports Traumatol Arthrosc 2015;23:225–31.
- 45 Hunter DJ, Niu J, Zhang Y, *et al.* Knee height, knee pain, and knee osteoarthritis: the Beijing Osteoarthritis study. *Arthritis Rheum* 2005;52:1418–23.

- 46 Hunter DJ, Zhang YQ, Niu JB, et al. Patella malalignment, pain and patellofemoral progression: the health ABC study. Osteoarthritis Cartilage 2007;15:1120–7.
- 47 Järvelä T, Paakkala T, Kannus P, et al. The incidence of patellofemoral osteoarthritis and associated findings 7 years after anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft. Am J Sports Med 2001;29:18–24.
- 48 Jones AC, Ledingham J, McAlindon T, et al. Radiographic assessment of patellofemoral osteoarthritis. *Ann Rheum Dis* 1993;52:655–8.
- 49 Keays SL, Bullock-Saxton JE, Keays AC, et al. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med 2007;35:729–39.
- 50 Kerna I, Kisand K, Tamm AE, et al. Two Single-Nucleotide polymorphisms in ADAM12 gene are associated with early and late radiographic knee osteoarthritis in estonian population. *Arthritis* 2013;2013:1–6.
- 51 Kujala UM, Kettunen J, Paananen H, et al. Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. Arthritis Rheum 1995;38:539–46.
- 52 Kumm J, Tamm A, Lintrop M, et al. The prevalence and progression of radiographic knee osteoarthritis over 6 years in a population-based cohort of middle-aged subjects. Rheumatol Int 2012;32:3545–50.
- 53 Lacey RJ, Thomas E, Duncan RC, et al. Gender difference in symptomatic radiographic knee osteoarthritis in the knee clinical assessment--CAS(K): a prospective study in the general population. BMC Musculoskelet Disord 2008:9:82.
- 54 Lanyon P, O'Reilly S, Jones A, et al. Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann Rheum Dis 1998:57:595–601.
- 55 Ledingham J, Regan M, Jones A, et al. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann Rheum Dis 1993:52:520–6.
- 56 Li RT, Lorenz S, Xu Y, et al. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med 2011;39:2595–603.
- 57 Lidén M, Sernert N, Rostgård-Christensen L, et al. Osteoarthritic changes after anterior cruciate ligament reconstruction using bone-patellar tendon-bone or hamstring tendon autografts: a retrospective, 7-year radiographic and clinical followup study. Arthroscopy 2008;24:899–908.
- 58 Lohmander LS, Ostenberg A, Englund M, et al. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004;50:3145–52.
- 59 McAlindon T, Zhang Y, Hannan M, et al. Are risk factors for patellofemoral and tibiofemoral knee osteoarthritis different? J Rheumatol 1996;23:332–7.
- 60 McAlindon TE, Snow S, Cooper C, et al. Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis 1992:51:844–9.
- 61 Messier SP, DeVita P, Cowan RE, et al. Do older adults with knee osteoarthritis place greater loads on the knee during gait? A preliminary study. Arch Phys Med Rehabil 2005;86:703–9
- 62 Murray JR, Lindh AM, Hogan NA, et al. Does anterior cruciate ligament reconstruction lead to degenerative disease?: thirteen-year results after bonepatellar tendon-bone autograft. Am J Sports Med 2012;40:404–13.
- 63 Naredo E, Cabero F, Palop MJ, et al. Ultrasonographic findings in knee osteoarthritis: a comparative study with clinical and radiographic assessment. Osteoarthritis Cartilage 2005;13:568–74.
- 64 Neame R, Zhang W, Deighton C, et al. Distribution of radiographic osteoarthritis between the right and left hands, hips, and knees. Arthritis Rheum 2004;50:1487–94.
- 65 Neuman P, Kostogiannis I, Fridén T, et al. Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury--a prospective cohort study. Osteoarthritis Cartilage 2009;17:284–90.
- 66 Øiestad BE, Holm I, Engebretsen L, et al. The prevalence of patellofemoral osteoarthritis 12 years after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy 2013;21:942–9.
- 67 Roth JH, Kennedy JC, Lockstadt H, et al. Polypropylene braid augmented and nonaugmented intraarticular anterior cruciate ligament reconstruction. Am J Sports Med 1985;13:321–36.
- 68 Rytter S, Egund N, Jensen LK, et al. Occupational kneeling and radiographic tibiofemoral and patellofemoral osteoarthritis. J Occup Med Toxicol 2009;4:19.
- 69 Sadat-Ali M, Al-Gindan Y, Al-Mousa M, et al. Osteoarthritis of the knee among saudi arabian security forces personnel. Mil Med 1996;161:105–7.
- 70 Sajovic M, Vengust V, Komadina R, et al. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med 2006:34:1933–40
- 71 Salmon LJ, Russell VJ, Refshauge K, et al. Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med 2006:34:721–32.
- 72 Spector TD, Harris PA, Hart DJ, et al. Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female exathletes and population controls. Arthritis Rheum 1996;39:988–95.

- 73 Swärd P, Fridén T, Boegård T, et al. Association between varus alignment and posttraumatic osteoarthritis after anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2013;21:2040–7.
- 74 Szebenyi B, Hollander AP, Dieppe P, et al. Associations between pain, function, and radiographic features in osteoarthritis of the knee. Arthritis Rheum 2006;54:230–5.
- 75 Szoeke C, Dennerstein L, Guthrie J, et al. The relationship between prospectively assessed body weight and physical activity and prevalence of radiological knee osteoarthritis in postmenopausal women. J Rheumatol 2006;33:1835–40
- 76 Tangtrakulwanich B, Geater AF, Chongsuvivatwong V. Prevalence, patterns, and risk factors of knee osteoarthritis in thai monks. J Orthop Sci 2006:11:439–45.
- 77 Thorstensson CA, Andersson ML, Jönsson H, et al. Natural course of knee osteoarthritis in middle-aged subjects with knee pain: 12-year follow-up using clinical and radiographic criteria. Ann Rheum Dis 2009;68:1890–3.
- 78 van der Esch M, Knol DL, Schaffers IC, et al. Osteoarthritis of the knee: multicompartmental or compartmental disease? Rheumatology 2014;53:540–6.
- 79 Amin S, Baker K, Niu J, et al. Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum 2009;60:189–98.
- 80 Amin S, Goggins J, Niu J, et al. Occupation-related squatting, kneeling, and heavy lifting and the knee joint: a magnetic resonance imaging-based study in men. J Rheumatol 2008;35:1645–9.
- 81 Amin S, Guermazi A, Lavalley MP, *et al*. Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. *Osteoarthritis Cartilage* 2008;16:897–902.
- 82 Cai J, Xu J, Wang K, et al. Association between infrapatellar fat pad volume and knee structural changes in patients with knee osteoarthritis. J Rheumatol 2015;42:1878–84.
- 83 Chan WP, Lang P, Stevens MP, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 1991;157:799–806.
- 84 Crema MD, Cibere J, Sayre EC, et al. The relationship between subchondral sclerosis detected with MRI and cartilage loss in a cohort of subjects with knee pain: the knee osteoarthritis progression (KOAP) study. Osteoarthritis Cartilage 2014:22:540–6
- 85 Culvenor AG, Collins NJ, Guermazi A, et al. Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction. Arthritis Rheumatol 2015;67:946–55.
- 86 Ding C, Cicuttini F, Scott F, et al. Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 2005;64:549–55.
- 87 Gross KD, Felson DT, Niu J, et al. Association of flat feet with knee pain and cartilage damage in older adults. Arthritis Care Res 2011;63:937–44.
- 88 Hayes CW, Jamadar DA, Welch GW, et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middleaged women. Radiology 2005;237:998–1007.
- 89 Kornaat PR, Watt I, Riyazi N, et al. The relationship between the MRI features of mild osteoarthritis in the patellofemoral and tibiofemoral compartments of the knee. Eur Radiol 2005;15:1538–43.
- 90 Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004;12:177–90.
- 91 Runhaar J, Schiphof D, van Meer B, et al. How to define subregional osteoarthritis progression using semi-quantitative MRI Osteoarthritis Knee Score (MOAKS). Osteoarthritis Cartilage 2014;22:1533–6.
- 92 Sharma L, Chmiel JS, Almagor O, et al. Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol 2014;66:1811–9.
- 93 Sowers M, Karvonen-Gutierrez CA, Jacobson JA, et al. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg Am 2011;93:241–51.
- 94 Stefanik JJ, Gross KD, Guermazi A, et al. Relation of step length to magnetic resonance Imaging-Detected structural damage in the patellofemoral joint: the multicenter osteoarthritis study. Arthritis Care Res 2016;68:776–83.
- 95 Stefanik JJ, Niu J, Gross KD, et al. Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage. Osteoarthritis Cartilage 2013;21:695–9.
- 96 Teng HL, MacLeod TD, Link TM, et al. Higher knee flexion moment during the second half of the stance phase of gait is associated with the progression of osteoarthritis of the patellofemoral joint on magnetic resonance imaging. J Orthop Sports Phys Ther 2015;45:656–64.
- 97 Tsavalas N, Katonis P, Karantanas AH. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study. *Eur Radiol* 2012;22:418–28.
- 98 van Meer BL, Oei EH, Meuffels DE, et al. Degenerative changes in the knee 2 years after anterior cruciate ligament rupture and related risk factors: a prospective observational Follow-up study. Am J Sports Med 2016;44:1524–33.
- 99 Wang J, Antony B, Zhu Z, et al. Association of patellar bone marrow lesions with knee pain, patellar cartilage defect and patellar cartilage volume loss in older adults: a cohort study. Osteoarthritis Cartilage 2015;23:1330–6.

Review

- 100 Wang Y, Dempsey AR, Lloyd DG, et al. Patellofemoral and tibiofemoral articular cartilage and subchondral bone health following arthroscopic partial medial meniscectomy. Knee Surg Sports Traumatol Arthrosc 2012;20:970–8.
- 101 Stefanik JJ, Gross KD, Guermazi A, et al. The relation of MRI-detected structural damage in the medial and lateral patellofemoral joint to knee pain: the multicenter and Framingham osteoarthritis studies. Osteoarthritis Cartilage 2015;23:565–70.
- 102 Crossley KM, Vicenzino B, Lentzos J, et al. Exercise, education, manual-therapy and taping compared to education for patellofemoral osteoarthritis: a blinded, randomised clinical trial. Osteoarthritis Cartilage 2015;23:1457–64.
- 103 Callaghan MJ, Parkes MJ, Hutchinson CE, et al. A randomised trial of a brace for patellofemoral osteoarthritis targeting knee pain and bone marrow lesions. Ann Rheum Dis 2015;74:1164–70.
- 104 Hunter DJ, Harvey W, Gross KD, et al. A randomized trial of patellofemoral bracing for treatment of patellofemoral osteoarthritis. Osteoarthritis Cartilage 2011;19:792–800.

- 105 Utting MR, Davies G, Newman JH. Is anterior knee pain a predisposing factor to patellofemoral osteoarthritis? *Knee* 2005;12:362–5.
- 106 Thomas MJ, Wood L, Selfe J, et al. Anterior knee pain in younger adults as a precursor to subsequent patellofemoral osteoarthritis: a systematic review. BMC Musculoskelet Disord 2010;11:201.
- 107 Roemer FW, Kwoh CK, Hannon MJ, et al. What comes first? multitissue involvement leading to radiographic osteoarthritis: magnetic resonance Imaging-Based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheumatol 2015;67:2085–96.
- 108 Javaid MK, Kiran A, Guermazi A, et al. Individual MRI and radiographic features of knee OA in subjects with unilateral knee pain: health ABC study. Arthritis Rheum 2012;64:3246–55.
- 109 Pelletier JP, Cooper C, Peterfy C, et al. What is the predictive value of MRI for the occurrence of knee replacement surgery in knee osteoarthritis? Ann Rheum Dis 2013;72:1594–604.