Article Text

Download PDFPDF

Progressing rehabilitation after injury: consider the ‘control-chaos continuum’
  1. Matt Taberner1,2,
  2. Tom Allen3,
  3. Daniel Dylan Cohen4
  1. 1 Performance Department, Everton Football Club, Liverpool, UK
  2. 2 School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, Merseyside, UK
  3. 3 Performance and Research Department, Arsenal Football Club, London, UK
  4. 4 Faculty of Health Sciences, University of Santander, Bucaramanga, Colombia
  1. Correspondence to Matt Taberner, Performance Department, Everton Football Club, Liverpool L26 3UE, UK; matt.taberner{at}evertonfc.com

Statistics from Altmetric.com

Introduction

Early reintegration to training and match play following injury increases the risk of reinjury. However, having key players available benefits the team.1 Practitioners must balance these two components of the return to sport (RTS) process, combining evidence and clinical experience to estimate this risk, then plan and adapt RTS accordingly.1 Quantifying and monitoring training load is key in guiding this process while managing reinjury risk,2–4 and global positioning systems (GPS) provide a valid measure of external running loads.5 However, as practitioners, we should focus on both quantitative aspects of running load progression and qualitative characteristics of movement in competition. This includes highly variable, spontaneous and unanticipated movements (the conditions of ‘chaos’) reflecting the unpredictable nature of the sport.

In this editorial, we present the ‘control-chaos continuum’ (CCC) (figure 1), interlinking GPS variables, while progressively incorporating greater perceptual and reactive neurocognitive challenges.6 7 This framework moves from high control to high chaos, and is based on more than a decade of rehabilitation and RTS in the demanding setting of English Premier League football.

Figure 1

Return to sport framework - the control-chaos continuum. Control=high level of structure on behaviour/actions/movement, that is, controlled situation. Chaos=unpredictable behaviour/actions/movement, as to appear random/reactive, that is, chaotic situation. Green represents high control (low intensity) moving towards high chaos (high intensity). Model can be adjusted according to specific injury diagnosis, estimated tissue healing times and expected return to training. Acc/Dec Magnitude =rate of change in velocity, for example, 3 ms−2.**Game load adjustable dependent on injury type/severity. ACC, accelerations; BW, bodyweight; COD, change of direction; DEC, decelerations; Exp-D, explosive distance (accelerating/decelerating from 2 to 4 ms−1 <1 s); HSR, high-speed running (>5.5 ms−1); MS, maximal speed; MAXHR, maximal heart rate; PR, passive recovery; SPR, sprint distance (>7 ms−1); TD, total distance.

The control-chaos continuum

Using retrospective player chronic running loads (GPS) in …

View Full Text

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.