VARIABLES PREDICTIVE OF PERFORMANCE IN ELITE MIDDLE-DISTANCE RUNNERS

W. L. KENNEY, PhD and J. L. HODGSON, PhD

Laboratory for Human Performance Research, The Pennsylvania State University, University Park, PA 16802, USA

ABSTRACT

The purpose of this study was to investigate possible factors which may account for differences in performance times within a closely-matched group (in terms of performance) of elite distance runners. The runners were trained for competition in the 1984 Olympic Games in either the 5000 m or the 3000 m steeplechase events. Each runner’s best performance time (BPT) was obtained and a stepwise regression analysis was performed with the following independent variables: age, weight, % body fat, VO₂ max, aerobic threshold (AerT), and anaerobic threshold (AnT). For the 5000 m runners, a multiple correlation of age and AnT accounted for 77% of the variance (p < 0.02); for the 3000 m steeplechase runners, body weight alone and body weight and AnT accounted for 94% (p < .01) and 98% (p < .05) of the variance, respectively. The results suggest that, among elite middle-distance runners, these parameters deserve attention as potential predictors of performance.

Key words: Elite distance runners, Prediction, Age, VO₂ max, Aerobic threshold, Anaerobic threshold, Body weight, % body fat.

INTRODUCTION

Physical and physiological characteristics of distance runners have received considerable attention in recent literature. Variables which have been associated with performance in distance running competition include maximal aerobic power (Costill, 1967; Davies and Thompson, 1979; Wyndham et al, 1969; Saltin and Åstrand, 1967), body composition (Costill et al, 1970; Novak et al, 1977; Spynarova and Parizkova, 1971), various training indices (Hagan et al, 1981; Murray et al, 1980; Slocv, 1977), and running economy (Conley and Krahenbuhl, 1981). However, prediction of performance times based on these and other parameters is often nebulous. For example, contrary to the traditional view that VO₂ max is the criterion on which to base cardiovascular endurance, LaFontaine (1981) pointed out recently that published correlations between VO₂ max and performance range from 0.08 to 0.91. An attempt to predict subtle performance differences in a homogeneous group of elite athletes is even more difficult. In the present study, possible predictors of best performance times for an elite group of 5000 m and 3000 m steeplechase (3000 s) runners were examined.

METHOD

Subjects

A total of 13 athletes was tested, eight 5000 m-runners and five 3000 m steeplechase runners. At the time of testing, all 13 were actively in training for these respective events for the 1984 Olympic Games, as part of the USOC Olympic development programme. Each was given a complete physical examination and gave informed consent to participate in the subsequent testing. Physical and physiological characteristics are given in Table I.

<table>
<thead>
<tr>
<th>Event</th>
<th>n</th>
<th>Age (yrs)</th>
<th>Weight (kg)</th>
<th>% Body Fat</th>
<th>VO₂ max</th>
<th>AnT</th>
<th>Best performance time (BPT) (min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000 m</td>
<td>8</td>
<td>21.4</td>
<td>64.5</td>
<td>8.8</td>
<td>74.4</td>
<td>62.2</td>
<td>14:05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 1.0</td>
<td>± 2.4</td>
<td>± 0.8</td>
<td>± 1.3</td>
<td>± 2.1</td>
<td>± 0.06</td>
</tr>
<tr>
<td>3000 m</td>
<td>5</td>
<td>22.0</td>
<td>71.9</td>
<td>9.2</td>
<td>72.4</td>
<td>58.0</td>
<td>8:38</td>
</tr>
<tr>
<td>Steeplechase</td>
<td></td>
<td>± 1.5</td>
<td>± 1.0</td>
<td>± 0.5</td>
<td>± 1.2</td>
<td>± 2.1</td>
<td>± 0.06</td>
</tr>
</tbody>
</table>

Procedures

Each subject was weighed under water to determine % body fat and given a continuous running graded exercise test to determine VO₂ max. On a separate day, another graded exercise test was administered to determine both the aerobic (AerT) and anaerobic (AnT) thresholds (according to the definitions of Skinner and McLellan, 1980). The protocol of that test was as follows: After an initial warm-up period, treadmill speed was increased from 5.5 to 10 mph at a rate of 0.5 mph min⁻¹. Thereafter, the grade was increased at a rate of 1% min⁻¹ until approximate maximum heart rate was reached. Data were recorded breath-by-breath by an on-line computer system and VE vs VO₂ and VCO₂ vs VO₂.
RESULTS AND DISCUSSION

As seen in Table I, the athletes in this study represented a fairly homogeneous group in terms of physical and physiological characteristics. They were also closely matched in terms of best times in 5000 m (SEM = 5 seconds) and 3000 m steeplechase events (SEM = 6 seconds). As a group, they can be characterised as having ectomorphomorphic body builds, high maximal aerobic capacities, and slightly below average body weights. Their ages ranged from 19 to 26, with a high age indicative of greater competitive running experience (personal observation).

The relationships between performance time and the independent variables studied are shown in Table II. None of the correlations for the 5000 m group were significant and only the relationship between total body weight and BPT 3000 s was significant (p < 0.01). The correlations between \(\text{VO}_2 \) max and performance (r = 0.28 and 0.40) were much lower than earlier investigators who used less homogeneous groups over distances from 7.5 km (4.7 mi) to 15 km (9.4 mi) (Costill, 1967; Costill et al, 1973; Foster et al, 1977; Foster et al, 1978). However, Conley and Krahenbuhl (1981) recently obtained a correlation of r = -0.12 with a subject population which was similar in homogeneity (for performance and \(\text{VO}_2 \) max) to the present group. Our correlation carried a positive sign, indicated that there was a small, albeit insignificant, inverse relationship between \(\text{VO}_2 \) and performance. This does not argue that \(\text{VO}_2 \) max is unimportant, as evidenced by the high levels exhibited by all members of the group, but that a given elite level of competition, a higher \(\text{VO}_2 \) max does not determine success in a race of this distance.

The best prediction equation of BPT 5000 contains the independent variables of age and AnT (BPT 5000 = 1155-5.4 (age) -2.9 (AnT)). The older runners had been training longer and had a greater advantage in terms of both years and level of competition. Thus, it appears that, within the age span of these runners, older (more experienced) runners who could delay onset of lactate formation (as evidenced by high AnT) did better in competitive 5000 m races.

In the 3000 m steeplechase group, body weight alone accounted for 94% of the variation in performance time (BPT 3000 s = 93.4 + 5.9 (wt), p < 0.01). Addition of AnT to the equation (BPT 3000 s = 99 + 5.4 (wt) + 0.6 (AnT)) increased the R² value to 98%. (However, due to the small sample size, the extra variable decreased the significance level somewhat).

Thus, it appears that for the small, homogeneous group of runners studied, age, AnT and body weight are important variables in predicting best performance time in competitive 5000 m and 3000 m steeplechase races. Other variables not studied here, e.g., running economy (Conley and Krahenbuhl, 1981), and training indices (Hagen et al, 1981) have shown similar predictive usefulness.

CONCLUSIONS

The present study merits the following conclusions:

1. A high aerobic capacity is a prerequisite for entry into an “elite” class of distance runners. However, among these runners, \(\text{VO}_2 \) max does not determine success in a competitive running event.

2. Within a highly-trained, homogeneous population of 5000 m runners, age (within the range of the present study) and anaerobic threshold accounted for a large and significant amount of variation (77%) in peak performance. In 3000 m steeplechasers, low total body weight alone accounted for 94% of the variation; body weight and AnT accounted for 98%.

3. It is recommended that, within such a group of athletes possessing equally-high aerobic capacities, age (experience), low body weight, and high anaerobic threshold are important attributes for successful performance.

REFERENCES

This book is written essentially for the trainer of Austrian and American flat race and trotting race horses, but the information given could be of value to the British trainer, point-to-point or hunter owner, and to those in European centres of trotting such as Austria.

The book applies the technique of modern human athletic training, based on muscle and cardio-respiratory physiology, to the training of the elite equine "athlete", an approach long overdue. He compares the 7%-15% improvement in human athletics in the past 25 years with only 1%-3% in equine performance. Anaerobic training is described using heart rate monitoring to aim at increasing speed with a heart rate of around 150 beats a minute (from a pre-exercise level of 35) and heart-rate meters are now available. The 150/min HR reaches the anaerobic threshold. More specific schedules are given to develop slow-twitch muscle fibres by distance work, then strenuous pace work to increase speed and stamina at steady state, developing fast-twitch fibres, and finally speed work, largely anaerobic, at HR > 150, by interval training. Horses, however, unlike humans, should not be trained to exhaustion. Special types of training, such as swimming, especially in rehabilitation after injury, are mentioned. The physiological reasons for the schedules are given in terms that should easily be understood by the layman.

Diet is discussed in detail, but the hundredweight of grain each eight to ten days needed for the race horse is beyond the pocket of the recreational rider, nor is it really necessary in this quantity. The chapter on drugs has several weaknesses, or rather missed opportunities. The author, although mentioning adverse effects of doping, fails to state that in international rules of racing even a trace of a prohibited drug is enough to have the horse banned, and the presence of theobromine from a chocolate tit-bit or from cattle cake made from chocolate-bean husks fed to point-to-pointers has led to heavy penalties.

This book is recommended to the owner of a competition horse, whether a point-to-point hunter or a child's gymkhana pony, as few doctors or physiotherapists own a race horse, though many are concerned with horses and ponies in some sort of training. To the non-horse owner the action photographs include some of dramatic accidents, illustrating the aetiology of human injuries. The need for better head protection is stressed. I am only sorry that this book was not written before my stable and paddock were empty. My daughter would have found it of considerable value.

H. E. Robson

BOOK REVIEW

Title: MANUAL MEDICINE 1984
Editors: J. Dvorak, V. Dvorak and W. Schneider
Publisher: Springer-Verlag, Berlin
Price: £28.80

This book contains the results of a seminar held in Fischingen, Switzerland, attended by 32 international specialists in Manual Medicine (in this context a combination of osteopathic medical practice and the latest American concept of muscle energy treatment techniques as propounded by Philip Greenman, D.O. Michigan State University).

It attempts to define treatment terminology such as 'mobilisation' and 'manipulation', and offer a multinational view, at times not only at variance but also at opposite extremes to each other, of a large number of examination and 'manipulative' procedures directed to the spine. A basic knowledge and groundwork in osteopathic practice is, in my view, essential before tackling this book, which is in danger of convincing the uninstructed of the requirement for "peaceful co-existence" in this branch of medicine as well as in East-West political confrontation in the 1980's.

For those with basic grounding in Manual Medicine the wide range of techniques demonstrated will add an interesting dimension though strictly in an osteopathic sense, without any direction towards other managements such as traction or injections.

M. A. Hutson