STRIDE FREQUENCY AND VENTILATION AT CONSTANT CARBON DIOXIDE OUTPUT

M. J. BERRY, PhD†, D. W. BACHARACH, MS and T. MORITANI, PhD*

Human Performance Laboratory, Department of Physical Education, Texas A & M University, College Station, TX 77843

ABSTRACT

To determine the consequences of two different stride frequencies on ventilation (VE) at similar levels of carbon dioxide production (VCO2), eleven male subjects performed two work tests on the treadmill. One test involved walking at a speed of 5 km/hr on a 15% grade while the other consisted of running on the treadmill at 9 km/hr on a 0% grade. Running increased stride frequency by 47%. The running and walking tests resulted in similar VCO2 levels, 1.85 ± 1.8 and 1.8 ± .20 l/min respectively, a non-significant difference. Ventilation during running was 43.73 ± 6.51 l/min and during walking was 43.26 ± 6.79 l/min, a non-significant difference. In addition the time constants for oxygen consumption (VCO2), VE and VCO2 were measured. The time constants for VCO2 and VE were not found to differ significantly during either the running or walking test. From our results, it can be seen that VE is more closely aligned to the metabolic state rather than stride frequency. In addition, the coupling of VE and VCO2 during the non-steady state is further indicative that ventilation is linked to the metabolic demands of the body.

Index terms: VCO2, Ventilatory control, Hypernea, Stride frequency

INTRODUCTION

Control of the pulmonary system during exercise is attributed to either a humourally or neurally mediated control system. After almost a century of debate, there is still no clear consensus as to which mechanism is responsible for exercise hyperpnoea. Filley and Heineken (1976), Wasserman et al (1974) and Yamamoto (1962) have all suggested mechanisms for a humourally mediated control of ventilation. Kao et al (1955, 1963), with their cross circulation studies suggested afferent feedback from the working muscle as a control mechanism, while Eldridge (1977) has advocated the contribution of central neural control.

(1980) and McMurray and Ahlborn (1982) have all shown a relationship between movement frequency and respiratory frequency and have suggested a neurogenic input to ventilatory control. While McMurray and Ahlborn (1982) held oxygen consumption (VO2) at a constant value for varying stride frequencies, neither of the other two investigations examined the metabolic rates during exercise. The relationship of VCO2 and VE to stride frequency was not examined in the studies by Bechbache and Duffin (1977), Jasinskas et al (1980) nor McMurray and Ahlborn (1982).
Hewlett-Packard (# 21073B) pneumotachograph, which was connected to a Hewlett-Packard (# 47304A) respiratory flow transducer, and into a 5 litre mixing chamber. Tidal volume (VT) was obtained by integrating expired air flow with a Hewlett-Packard (HP5825A) computer and was used for the determination of VE by multiplying it by the breathing frequency. Expired CO₂ was determined with a Beckman LB-2 analyser, and expired O₂ with an Applied Electrochemistry S-3 analyser. Both analyses were calibrated routinely throughout the tests using precision analysed gas mixtures. Expired gas was sampled from the mixing chamber to each of the analysers at a rate of 500 ml/min. The electrical outputs from the gas analysers and the flow transducers were connected, via analog to digital conversion, then to a Hewlett-Packard (HP5825A) computer which was programmed to calculate and display minute values every 15 sec throughout the two minutes prior to the start of exercise and the exercise periods. Heart rate was monitored in all subjects using a CMS lead configuration with a Dynacomp Life System.

To determine the time constants for VO₂, VCO₂, and VE the data were analysed using a Hewlett-Packard (HP 9836) computer. Resting values were derived by averaging 15 sec sampling periods over a two minute period prior to the start of exercise. Steady state was calculated as the average of the 15 sec sampling periods during the 5th and 8th minutes of exercise. The time course of the transition from rest to steady state was calculated from the average 15 sec values. Time constants, the time for an exponential process to achieve approximately 63.2% of the steady state value, were determined graphically by plotting the time courses of the difference between steady state and transitional values on a semilogarithmic plot (see Fig. 1).

The variables of stride frequency (SF), HR, VO₂, VCO₂ and VE from the steady states of both tests were analysed using a correlated t-test. The time constants of VE, VCO₂ and VO₂ were analysed using ANOVA. If the omnibus F test was found to be significant, Duncan’s test was used in order to determine the exact nature of the difference.

RESULTS
Resting values, prior to the start of each exercise test, for VO₂, HR, VCO₂, VE and R are shown in Table II. It can be seen from this table that all the metabolic variables we monitored returned to their resting levels prior to the start of the

<p>| TABLE I |
| Mean physical and some physiological characteristics of subjects. |</p>
<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
<th>VO₂ max (l/min)</th>
<th>AT* (l/min)</th>
<th>AT* (% VO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>30.8</td>
<td>163.6</td>
<td>3.82</td>
<td>2.44</td>
<td>63.9</td>
</tr>
<tr>
<td>SD</td>
<td>5.2</td>
<td>25.6</td>
<td>10.6</td>
<td>0.73</td>
<td>5.57</td>
</tr>
</tbody>
</table>

*denotes “anaerobic threshold”

Packard (# 21073B) pneumotachograph, which was connected to a Hewlett-Packard (# 47304A) respiratory flow transducer, and into a 5 litre mixing chamber. Tidal volume (VT) was obtained by integrating expired air flow with a Hewlett-Packard (HP5825A) computer and was used for the determination of VE by multiplying it by the breathing frequency. Expired CO₂ was determined with a Beckman LB-2 analyser, and expired O₂ with an Applied Electrochemistry S-3 analyser. Both analyses were calibrated routinely throughout the tests using precision analysed gas mixtures. Expired gas was sampled from the mixing chamber to each of the analysers at a rate of 500 ml/min. The electrical outputs from the gas analysers and the flow transducers were connected, via analog to digital conversion, then to a Hewlett-Packard (HP5825A) computer which was programmed to calculate and display minute values every 15 sec throughout the two minutes prior to the start of exercise and the exercise periods. Heart rate was monitored in all subjects using a CMS lead configuration with a Dynacomp Life System.

To determine the time constants for VO₂, VCO₂, and VE the data were analysed using a Hewlett-Packard (HP 9836) computer. Resting values were derived by averaging 15 sec sampling periods over a two minute period prior to the start of exercise. Steady state was calculated as the average of the 15 sec sampling periods during the 5th and 8th minutes of exercise. The time course of the transition from rest to steady state was calculated from the average 15 sec values. Time constants, the time for an exponential process to achieve approximately 63.2% of the steady state value, were determined graphically by plotting the time courses of the difference between steady state and transitional values on a semilogarithmic plot (see Fig. 1).

The variables of stride frequency (SF), HR, VO₂, VCO₂ and VE from the steady states of both tests were analysed using a correlated t-test. The time constants of VE, VCO₂ and VO₂ were analysed using ANOVA. If the omnibus F test was found to be significant, Duncan’s test was used in order to determine the exact nature of the difference.

RESULTS
Resting values, prior to the start of each exercise test, for VO₂, HR, VCO₂, VE and R are shown in Table II. It can be seen from this table that all the metabolic variables we monitored returned to their resting levels prior to the start of the

| TABLE II |
| Comparison of mean resting metabolic values prior to Test 1 and Test 2 |
VO₂	VCO₂	VE	Heart Rate	R	
(l/min)	(l/min)	(l/min)	(b/min)	(s/min)	
Test 1	2.07±0.09	0.23±0.06	8.27±2.15	66±9	0.87±0.09
Test 2	2.08±0.05	0.25±0.05	8.74±2.12	67±9	0.90±0.08

None of these variables were found to differ significantly.

Second test. Only one subject was required to return to the laboratory on the following day in order to complete his testing, being unable to complete during one session as his metabolic variables failed to return to a resting level within the allotted time period.

Values for VO₂, VCO₂, R, VE, HR and stride frequency (SF) during the walking test and during the running test are shown in Table III. Running resulted in a 47% increase in stride frequency when compared with walking (P < 0.001). Stride frequency increased from 108±9 strides/min to 159±8 strides/min during running. The mean VCO₂ during running was 1.86±0.18 l/min and during walking it was 1.95±0.20 l/min. This 100 ml/min was minimal and not found to be significant. The walking test required an average VO₂ of 2.10±0.31 ml/min while the running test required an average VO₂ of 2.08±0.24 l/min, a non-significant difference. R values for steady state during running and walking were 0.88±0.07 and 0.90±0.06 respectively, also a non-significant difference. Mean heart rates during steady state running and walking were both 130 beats/min. While we were only concerned with holding VCO₂ constant during the two tests, this resulted in a similarity between other metabolic markers. The running test yielded an average VE of 43.73±6.51 l/min and this was not found to be significantly different from the walking value of 43.26±6.71 l/min, despite the 47% increase in stride frequency.

| TABLE III |
| Comparison of mean physiological and mechanical variables during steady state running and walking (values are mean ± SD) |
VO₂	VCO₂	VE	HR	SF*	R	
(l/min)	(l/min)	(l/min)	(b/min)	(s/min)		
Walk	2.10±0.31	1.95±0.20	43.26±6.79	130±10	108±9	0.90±0.06
Run	2.08±0.24	1.85±0.18	43.73±6.51	130±10	159±8	0.88±0.07

*Significant difference (P < 0.001) between stride frequencies.

DISCUSSION
From our results, it is apparent that the change in stride frequency produced no appreciable change in ventilation when the production of carbon dioxide was held constant. These findings appear to be in conflict with those of McMurray and Ahlborn (1982), who found that when the metabolic rate was held constant an increase in ventilation would be concomitant with an increase in stride frequency. One reason for this discrepancy may be due in part to methodology. The running speed and percent grade used in our study were determined in order to provide for a similar VCO₂, but the protocols used by McMurray and Ahlborn (1982) were determined to provide for analogous metabolic rates with VO₂ and heart rate serving as the metabolic markers. While we inadvertently held VO₂ and heart rate constant during both testing procedures, we chose VCO₂ to serve as the metabolic marker. Another possibility for the disparity between the two investigations is that the protocols used during walking were different. Our subjects walked at 5.0 km/h at a 15% grade while the subjects in the study of McMurray and Ahlborn (1982) walked at 5.8 km/h at an 8% grade. A final reason suggested for the conflicting results is the subjects’ level of fitness and training. The mean VO₂ max in our subjects was 46.52 ml/kg/min.
McMurray (personal communication) reported the VO₂ max of their subjects to be close to 60.0 ml/kg/min, indicating highly fit and trained individuals. Hanson et al. (1982) found that running on a 0-3% grade elicited a 10-25% increase in breathing frequency and VE when compared to walking on a 14-24% grade. All subjects employed in Hanson et al. (1983) investigation were also highly trained exhibiting VO₂ max values in excess of 58.0 ml/kg/min. In fact, all of these subjects had competed for at least 5 years in competitive middle and long distance races. Bramble and Carrier (1983) studied locomotor-respiratory coupling (LRC) in experienced runners and persons with little or no running experience. These authors found breathing and gait to be coupled tightly in the experienced runners while those with a paucity of running experience demonstrated little or no tendency to synchronise gait and respiration. Even individuals in good physical condition who maintained a fitness programme other than running showed no signs of entrainment. Whether entrainment is a learned response as a result of extensive training is a question that must be answered with future research. The work of Bramble and Carrier (1983), Hanson et al. (1982) and McMurray and Ahlborn (1982) all suggest a link between VE and stride frequency in trained individuals. The fact that we did not find this link may be in part due to us using only moderately fit individuals. Based on these other studies, it does not seem unreasonable that stimulation of neurogenic origin from higher brain centres (Eldridge et al., 1981) may provide a feedforward drive for ventilation.

Our finding a link between VCO₂ and VE is corroborative of other investigations using both treadmill and bicycle ergometry protocols. Kay et al. (1975) found the relationship between VE and VCO₂ to be irrespective of pedal frequency during steady state exercise. These investigators reported VE to be a linear function of VCO₂. A study by Dixon et al. (1961) showed there to be no relationship between respiratory rate and the frequency of limb movement. Casaburi and associates (1977) had their subjects work on a cycle ergometer against a constant work load with varying pedal frequencies and noted that changes in VE were closely aligned and ascribable to changes in VCO₂. The variation in pedal frequency was not found to produce a change in VE independent of VCO₂. Dejours (1967) stated there may be little difference in VE when the work load is held constant during two different combinations of treadmill speed and grade. While we did not plan to hold VO₂ constant a priori, analysis of our data did show the metabolic cost of the two protocols to be equated. Thus our findings are in agreement with Dejours.

In addition to studying the relationship of VE and VCO₂ during the steady state phase of exercise, we also examined the kinetic responses of these two variables, along with VO₂ during the transition from rest to steady state. While our methods for kinetic analysis were susceptible to extraneous contamination due to our analytical procedures, the coupling between VE and VCO₂ is easily noted. We found no significant difference between the time constants of VE and VCO₂ during both running and walking. When we compared the time constants of VCO₂ and VE with that of VO₂, a significant difference was found during both running and walking. Ventilation was found to be coupled to VO₂ and in both running and walking VE was found to “track” VCO₂ (see Figs. 2 and 3). One reason for the delay in the time constants of VE and VCO₂ when compared with VO₂ during the onset of work is the high solubility of CO₂ in the body tissues (Fahri and Rahn, 1976). In contrast, the body’s ability to store oxygen is small. There are limited stores of oxygen bound to myoglobin but the majority of the oxygen in the body is bound to haemoglobin. This increased extravascular capacitance of the body for CO₂ over O₂ is reflected in the transient decrease in R values at the start of exercise. An examination of Fig. 4 shows transient decreases in R values during the first minute of exercise for both running and walking.
Our findings of a closely aligned VE-VCO₂ response at the start of exercise and a faster response for VO₂ are congruous with those found in investigations using square wave (Diamond et al., 1977; Linnarsson, 1974) and sinusoidal (Casaburi et al., 1977) work forcings. The coupling of VE and VCO₂ irrespective of stride frequency during steady state exercise is indicative of the fact that VE is tightly coupled to the metabolic demands placed on the body. Further evidence for the VE-VCO₂ link is noted during the transition from rest to exercise when VE is found to "track" VCO₂.

References

Hanson, P., Claremont, A., Dempsey, J. and Reddan, W., 1982 "Determinants and consequences of ventilatory responses to competitive endurance running". J.Appl.Physiol. 52: 615-623.

McMurray, R. G. and Ahlborn, S. W., 1982 "Respiratory responses to running and walking at the same metabolic rate". Respir.Physiol. 47: 257-265.

BOOK REVIEW

Title: A BIBLIOGRAPHY OF RESEARCH PAPERS ON PHYSIQUE, SOMATOTYPING AND BODY COMPOSITION RELATED TO SPORTS PERFORMANCE. 2nd Edition

Author: Peter Bale 1985

Publisher: Brighton Polytechnic, Chelsea School of Human Movement, Denton Road, EASTBOURNE, Sussex BN20 7SR

Price: £3.50 55 pages A4 typewritten Soft cover ring binding

This second edition of “Bale’s Bibliography of Body Composition” (and can we not use this as a much easier title than the one the author gives the work?) updates the comprehensive lists of references from the first edition. As before, the references are given alphabetically in each of the eighteen sections, each section being devoted to one group of sports, such as “Athletics — track, field and distance running”, or “table tennis, tennis and squash”. Inevitably, many of the 600 references are duplicated; for example, J. M. Tanner’s ‘Physique of the Olympic Athlete’ is quoted in several sections, and three of J. Lindsay Carter’s papers in even more. As well as the groups of specific sports, sections are devoted to nutrition and to training, both related to physique — and most of the significant and less significant papers of the past twenty years are listed.

A few unfortunate errors have been missed in proof; the small circle above the Å of Åstrand’s name, which makes it the penultimate, not the first letter of the Norwegian alphabet; the dot above the V in VO₂ max, indicating the rate of oxygen uptake, and worst of all, the misspelling on several occasions of the names of the Curetons, T. K. and his son, K. J., both spelt several times as “Curton”. Several references are made to the “Journal of Sports Medicine” without specifying which. From the volume numbers and years I assume this is the “Journal of Sports Medicine and Physical Fitness”. Apart from this, the lists provide a useful source of reference for any student or scientist interested in physique assessment, and the author is to be congratulated on the production of a very helpful research tool, at a price a student can afford for himself. Cash with order to the College, postage and packing included.

H. E. Robson
RESEARCH
The Institute will undertake research projects linked with other London organisations.

TREATMENT
There are no immediate plans for treatment of sports injuries but its activities should do much to improve the standard of care of sportsmen, particularly in London.

LINKS
It is hoped that close links will be forged with existing sports medicine and sports science organisations as well as sports administrative bodies and academic institutions in London.

COUNCIL
The Council of Management is chaired by Mary Glen-Haig of the British Olympic Association and has representatives from sport, academic medicine and the GLC.

STAFF
Staff recruitment is commencing shortly.

Further information is available from the Medical Director, Dr. Dan Tunstall-Pedoe
London Sports Medicine Institute
c/o Medical College of St. Bartholomew’s Hospital
Charterhouse Square
London EC1M 6BQ

ERRATA
1. It is regretted that the following paper was omitted from the Author Index (19:4) and entered incompletely in the Subject Index.

 Table I was incorrect and should read as follows

 TABLE I
 Mean physical and some physiological characteristics of subjects.

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
<th>VO2 max (l/min)</th>
<th>AT* (l/min)</th>
<th>AT* (%VO2 max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>30.8</td>
<td>163.6</td>
<td>76.9</td>
<td>3.82</td>
<td>2.44</td>
</tr>
<tr>
<td>SD</td>
<td>5.2</td>
<td>25.6</td>
<td>10.6</td>
<td>0.73</td>
<td>0.57</td>
</tr>
</tbody>
</table>