Clearly the problem has been given inadequate attention. We feel that an awareness of the possibility of injury is an essential prerequisite for prevention. It is noteworthy that the MCC does not keep a record of injuries sustained during cricket under its aegis (Stephenson, 1986) but we would welcome the introduction of such a register which would at least indicate the scale of the problem.

Projectile size is a well-known factor in its ability to penetrate the bony orbit margins and damage the globe itself (Keeney, 1981). The orbit and its contents are easily accessible to such small objects as squash balls and badminton shuttlecocks and injuries caused by these have been well documented (Ingram and Lewkonia, 1973; Chandran, 1974; Blonstein, 1975; Kennerley Bankes, 1985). However, to an object as large as a cricket ball the brow offers substantial protection to the eye when the line of approach is horizontal. This is not so for a rising trajectory especially when the ball approaches obliquely from the side; indeed rupture of the globe is most frequent from a blow directed from the lower and lateral side (Warwick, 1976). It is apparent that in all our cases the injury was caused by a rising ball. In three of these cases the hook shot was involved; a horizontal swing across the line of a ball which is frequently rapidly rising from a short pitched delivery. An upward glance from the upper edge of the bat may adjust the trajectory to a nicety.

It is probably no coincidence that, in our three cricketers who were hooking the ball, the eye on the side of the dominant (right) hand was involved, when one considers the turn of the body at the point of impact. The hook appears to be a stroke which puts the eyes at particular risk.

The eye is a resilient structure, and blowout fractures of the orbit floor are common in the presence of an intact globe. However, a fracture of the orbit margin itself indicates a much more forceful blow and globe rupture may occur, as in Case 5. We would therefore recommend particular care in the examination of the globe for rupture when there is an orbit margin fracture.

That head injury is a risk in cricket is well demonstrated by the influx of protective headgear. Protection of the upper face by visor or cage however is by no means commonplace. It has recently been well demonstrated in Canadian Ice Hockey that the widespread introduction of eye protection has dramatically reduced the incidence of eye injuries (Pashby, 1985). We therefore feel that adequate eye protection should be strongly recommended for cricketers, particularly batsmen facing fast bowling and for close fielders in the same circumstances, at club and professional levels, if not at all levels of proficiency.

ACKNOWLEDGEMENTS
We thank Mr. S. K. Bhargava, Mr. R. Dalgleish, Mr. C. L. Dodd and Mr. K. B. Mills for permission to use the data of their patients.

References

BOOK REVIEW
Title: VESTIBULAR AND VISUAL CONTROL ON POSTURE AND LOCOMOTOR EQUILIBRIUM
Editors: M. Igarashi and F. O. Black
Publisher: Karger (Basel)
Price: US $80.50
ISBN 3-8055-3951-7
366 pages, 149 figs., 25 tables

This is a report of the 7th International Symposium of the International Society of Posturography, Houston, Texas, held in 1983.

The editors, Makoto Igarashi and F. Owen Black, are most respected workers in the field and the papers of many distinguished scientists are presented. Perhaps the most interesting area of discussion was the importance of postural control in a space environment.

This is certainly not a book for the casual reader, but those involved in research into locomotion, posture and the sensory control of both and those interested in vestibular abnormalities will find much food for thought. It is certainly a reference book that is more suited to the library, than to the bookshelf of the ordinary practitioner in the field of sports medicine and rehabilitation.

R. S. A. Thomas, FRCS