CARDIO-RESPIRATORY FITNESS OF YOUNG AND OLDER ACTIVE AND SEDENTARY MEN

J. W. SHIGEOKat and W. B. HONEKAT‡

*Neuropsychology Research (151A), Veterans Administration Medical Center, Salt Lake City, UT
1Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT
1Department of Psychology, University of Utah, Salt Lake City, UT
1Chairman, Department of Health, Sport and Leisure Studies, George Mason University, Fairfax, VA
§Department of Physical Education, College of Health, University of Utah, Salt Lake City, UT
1Pulmonary Department, Veterans Administration Medical Center, Salt Lake City, UT
1Pulmonary Department, Veterans Administration Outpatient Clinic, Sacramento, CA

ABSTRACT

Physiological profiles are described for 30 healthy young (20-31 years) and 30 healthy older (50-62 years) men. Half of the individuals in each group reported that during the previous five years they participated frequently in strenuous physical exercises; the other half reported sedentary lifestyles. A treadmill exercise test was used to determine maximal aerobic power (V02 max). Heart rate and blood pressure were measured during rest, maximal exercise and recovery. The active older men demonstrated significantly lower resting heart rates, lower resting systolic and diastolic blood pressures, higher V02 max, lower maximal exercise diastolic blood pressure and lower recovery heart rates than the age-matched sedentary men. Compared with the young sedentary men, the older active men had lower resting heart rates and higher V02 max, walked longer on the treadmill, had lower recovery heart rates and weighed less. Older active men also had higher V02 max levels than young sedentary men. In summary, physiological profiles of the older active men more closely resembled profiles of active men who were 30 years younger than those of older sedentary men. These results emphasise the range of benefits associated with exercise.

Key words: Maximal aerobic power, V02 max, Ageing, Fitness

INTRODUCTION

Being physically fit has been associated with “the ability to carry out daily tasks without undue fatigue and with ample energy to enjoy leisure-time pursuits and to meet unforeseen emergencies” (United States President’s Council of Physical Fitness, 1977). Such fitness is reflected in specific measures of work capacity and oxygen uptake (Cooper, 1977) and more globally in increased vigour (devVries, 1975), decreased incidence of chronic diseases (Blackburn, 1983; Paffenbarger et al., 1986), enhanced relaxation (devVries et al., 1981), improved performance on neuropsychological tests of mental flexibility and faster response time (Dustman et al., 1984). It has also been suggested that a physically active lifestyle may reduce by half the age-related decline in maximal aerobic power and other measures of physical fitness (Dehn and Bruce, 1972; Heath et al., 1961).

It has been well documented that consistent participation in aerobic exercises is accompanied by improvement in maximal oxygen uptake (V02 max), a measure of oxygen utilisation efficiency (Larsen and Bruce, 1987), but the physiological characteristics and magnitude of differences between individuals who lead sedentary and physically active lifestyles have not been described adequately. We have conducted maximal exercise stress tests on young and old physically active and inactive men in order to describe maximal aerobic power and cardiovascular reactivity for these individuals at rest, during maximal exercise and during recovery from exercise. The major objective of the study was to extend what is presently known about the effects of a lifestyle of continuous aerobic exercise participation. To this end we studied older groups of physically active (high fit) and sedentary (low fit) men and compared their physiological profiles with those of much younger high and low fit men.

METHODS

Subjects

Four groups, each of 15 healthy, non-smoking male volunteers, were selected on the basis of exercise history and documented fitness level (V02 max): young high fit (x = 24, sd = 2.9 years), young low fit (x = 26, sd = 2.6 years), older high fit (x = 54, sd = 3.0 years), and older low fit (x = 56, sd = 3.2 years). Fitness levels were documented by a maximal exercise test on a motor driven treadmill during which a standard open-circuit indirect calorimeter system was used so that measures of minute ventilation and V02 max (ml.kg⁻¹.min⁻¹) could be obtained. Only those whose age-adjusted V02 max (Cooper, 1977) indicated their fitness level was either “excellent” to “superior” (high fit men) or “fair to poor” (low fit men) were included in the study. Maximal oxygen uptake of an additional 19 prospective subjects did not meet these fitness criteria; they were not studied further. The weekly frequency, estimated energy expenditure and type of aerobic activity engaged in by the young and old high fit subjects are outlined in Table I.

<table>
<thead>
<tr>
<th>Exercise Type</th>
<th>Young</th>
<th>Old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days/wk</td>
<td>4.5</td>
<td>4.9</td>
</tr>
<tr>
<td>kCal</td>
<td>16.7</td>
<td>14.2</td>
</tr>
<tr>
<td>Triath</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Bicycle</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Swim</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>MJ</th>
<th>Exercise Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>4.5</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Triath = Combination of jogging, bicycling, swimming
BB = Full court basketball
Wrest = Wrestling (competitive)
Aerobics = Aerobics dance instructor

Address for correspondence:
R. E. Dustman, PhD (151A)
Director, Neuropsychology Laboratory
Veterans Administration Medical Center
500 Foothill Drive
Salt Lake City, Utah 84148
USA

[Table I]

Average weekly frequency, estimated energy expenditure, and type of exercise of 15 young and 15 old high fit men

[Table I is not visible in the provided text.]

Full Court Basketball
Wrestling (competitive)
Aerobics (dance instructor)
Energy expenditure was estimated from self-reports of exercise frequency, intensity and duration and from energy expenditure equations found in Fox and Matthews (1981, p. 534). Medical history and physical activity questionnaires were completed by all subjects. Subjects were paid for participation in the study.

Maximal Exercise Test

The Human Performance Research Laboratory at the University of Utah was the setting for the maximal exercise test. Subjects were required to report to the laboratory at least 2 hours post-prandial. Body weight and height were recorded and each subject was seated quietly on the treadmill for a minimum of 5 minutes whilst resting heart rate and blood pressure were recorded. Heart rate and rhythm were monitored continuously with an electrocardiograph (CM5 lead configuration) throughout the rest, exercise and recovery periods. Determination of blood pressure was performed by the indirect brachial artery auscultation technique. The first and third Korotkoff sounds were recorded with a mercury sphygmomanometer and a stethoscope. Blood pressure was recorded during the third and fifth minutes of rest, and every third minute during exercise until the subject neared VO2 max when it was taken every minute. Blood pressure was taken every 3 minutes during the recovery period.

The maximal exercise test was performed on a Haden Pacer R-9 motor driven treadmill using a Modified Balke Multistage Progressive Treadmill Protocol (1.48 m.s⁻¹ [3.3 mph] speed and 1% increase in slope per minute) (Balke and Ware, 1959) for all but the young high fit subjects who were tested at a speed of 1.67 m.s⁻¹ (3.7 mph). Data on heart rate, ventilation, and oxygen uptake were read from a visual display on a computer print-out each minute. Criteria for VO2 max included: attainment of the subject's age-predicted maximal heart rate, a rise of oxygen consumption of less than 150 ml.min⁻¹ or 2.1 ml.kg⁻¹.min⁻¹, and a respiratory exchange ratio greater than or equal to 1.0 (Taylor et al, 1955). The maximal exercise test was to be terminated if subjects demonstrated greater than 6 premature ventricular depolarisations (PVDs) per minute, if systolic blood pressure fell 20 mmHg in one minute despite increasing work rate, or if subjects indicated they could not continue another minute (American College of Sports Medicine, 1986). No tests were terminated before the subject achieved VO2 max criteria. A physician was present during all exercise tests of older low fit men.

Subjects in the four groups were compared with respect to heart rate, systolic and diastolic blood pressure at rest, maximal heart rate, VO2 max, maximal systolic and diastolic blood pressure, time on the treadmill, and heart rate during the fifth minute of recovery from exercise.

RESULTS

The physiological indicators of maximal aerobic power during the maximal exercise test and the results of Age × Fitness ANOVAs are described in Table II. A summary of the relationships between age and fitness is found in Table III. Significant age × fitness interactions occurred with resting systolic blood pressure (SBP) and with diastolic blood pressure (DBP) during maximal effort (see Fig. 1).

The older aerobically fit men were compared with the young low fit men on cardiorespiratory measures known to change during adult ageing (t-tests for independent groups). Compared with young low fit men, older high fit subjects had lower weight (P < 0.05), lower resting heart rate (P < 0.001), longer treadmill time (P < 0.001), higher VO2 max (P < 0.001), and lower recovery heart rate (P < 0.001). VO2 max values for the young and old high and low fit subjects are depicted in Fig. 2.

DISCUSSION

VO2 max normally declines with ageing, at a rate of about 9% per decade for physically inactive people. The rate of decline is substantially slowed (to about 5%) in those who

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means, standard deviations and p-values resulting from Age × Fitness ANOVAs computed on physiological measurements obtained from young and old men with high and low fitness levels during rest (mean of 5 minutes sitting), maximal exercise and after five minutes recovery from maximal exercise stress testing conditions. See Table III for group mean comparisons.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Young Mean SD</th>
<th>Low Mean SD</th>
<th>Old Mean SD</th>
<th>Low Mean SD</th>
<th>Significance Level</th>
<th>Age</th>
<th>Fitness</th>
<th>A × F*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest HR</td>
<td>72 7</td>
<td>85 13</td>
<td>64 10</td>
<td>81 10</td>
<td><0.04</td>
<td><0.001</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>SBP</td>
<td>131 14</td>
<td>127 11</td>
<td>130 8</td>
<td>142 15</td>
<td><0.04</td>
<td>ns</td>
<td><0.02</td>
<td>ns</td>
</tr>
<tr>
<td>DBP</td>
<td>83 9</td>
<td>86 8</td>
<td>87 8</td>
<td>95 6</td>
<td><0.005</td>
<td><0.01</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Exercise HR</td>
<td>190 9</td>
<td>192 9</td>
<td>164 14</td>
<td>165 11</td>
<td><0.001</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>VO2 max</td>
<td>60 6</td>
<td>38 6</td>
<td>50 6</td>
<td>29 4</td>
<td><0.001</td>
<td><0.001</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>SBP</td>
<td>206 24</td>
<td>188 21</td>
<td>188 25</td>
<td>186 29</td>
<td>ns</td>
<td>ns</td>
<td><0.025</td>
<td><0.025</td>
</tr>
<tr>
<td>DBP</td>
<td>78 9</td>
<td>80 9</td>
<td>79 11</td>
<td>91 8</td>
<td><0.025</td>
<td><0.01</td>
<td><0.025</td>
<td>ns</td>
</tr>
<tr>
<td>Recovery HR</td>
<td>109 12</td>
<td>117 11</td>
<td>92 17</td>
<td>108 10</td>
<td><0.001</td>
<td><0.001</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

*Age × Fitness interaction
ns = not significant
HR = Heart rate (beat min⁻¹)
SBP = Systolic blood pressure (mmHg)
DBP = Diastolic blood pressure (mmHg)
VO2 max expressed in ml.kg⁻¹.min⁻¹
performance on the treadmill to improved cardiovascular performance during resting and recovery conditions. It is notable that a relationship between physical activity (up to 14.7 MJ (3,500 Kcal) per week) and lower coronary heart disease (CHD) risk has been demonstrated (Paffenbarger et al, 1986). Our active older subjects expended an estimated 14.2 MJ (3,400 Kcal) of energy per week in aerobic activities, and all subjects who reported vigorous aerobic exercise participation had VO₂ max levels in the “excellent” or “superior” category (Cooper, 1977). Exercise which increases maximum aerobic power may be directly related to reduced CHD risk through improved cardiovascular responses such as those evidenced by our active subjects.

It might be argued that the high maximal aerobic power and exercise stamina of older active men reflects a biologic predisposition toward high physical fitness. Endurance and VO₂ max are, in part, heritable traits (Bouchard et al, 1986; Fox, 1984). Regardless of genetic differences between individuals who self select active and sedentary lifestyles, it has also been demonstrated that previously sedentary individuals who increase their activity levels can substantially increase their maximal aerobic power (de Vries, 1975). We reported a 27% increase in VO₂ max for previously sedentary elderly individuals who completed a 4-month exercise programme (Dustman et al, 1984; Steinhaus et al, in press). Such findings suggest that although maximal aerobic power and exercise stamina may be genetically influenced, their ultimate values are highly dependent on level of physical activity.

It should be noted that no injuries or incidents occurred during any of the 79 maximal exercise tests we conducted, and approximately half of these tests were performed by previously sedentary individuals with poor to fair fitness levels. These results demonstrate that with careful pre-exercise health screening, orientation, and physician supervision, older low fit individuals can safely exercise to maximal oxygen uptake on a treadmill. In addition to screening for exercise intolerance, this procedure may be of use for demonstrating the feasibility of exercise to inactive individuals and for prescribing target exercise heart rates for those who are beginning an exercise programme.

In summary, we have described important differences between aerobically high and low fit individuals on measures of cardio-respiratory endurance, resting heart rate, resting blood pressure, and recovery heart rates. Clearly, the physiological profiles of the older active individuals resembled more closely the profiles of young high fit individuals than those of age-matched sedentary men. The nature of cardiovascular response differences
between active and sedentary people may contribute to reduced CHD risk.

ACKNOWLEDGEMENT

This research was supported by the Veterans Administration.

References

